EFFECT OF WATER STRESS ON PLANT GROWTH AND QUALITY OF SEEDS IN OKRA

(Abelmoschus esculentus (L.) MONECH)

501,40 ps/ph/8

BY

PERIYAN THAMAYANTHY

A RESEARCH REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE ADVANCED COURSE

IN AGRICULTURAL BIOLOGY

FOR

THE DEGREE OF THE BACHELOR OF SCIENCE IN AGRICULTURE

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY, SRI LANKA

CHENKALADY

2000

Project Report
Library - EUSL

APPROVED BY

SUPERVISOR

Dr. V. ARULNANDHY

SENIOR LECTURER

DIVISION OF AGRICULTURAL BIOLOGY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY, SRI LANKA.

CHENKALADY

39430

DATE: 05. 01. 2001

Thahenotran

HEAD OF AGRONOMY
Dr. (Mrs.) T. MAHENDRAN
HEAD OF AGRONOMY
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRI LANKA
CHENKALADY

DATE: 05.01.2001

Dept. of Agronomy
Faculty of Agriculture
Eastern University, Sri Lanka.

PROCESSED

ABSTRACT

The experiment was planned to evaluate the effect of water stress on plant growth and quality of seeds in okra (Abelmoschus esculentus).

This experiment in a RCBD with four replicates was carried out in the division of Agricultural biology of Eastern University Sri Lanka, Vantharumoolai located in the Eastern Sri Lanka, during the period of July to October 2000. Treatments included 2, 4 and 6 days moisture stress at pod initiation and two weeks after pod initiation and the control was without water stress condition.

Measurements as well as observation were made on plant height at pod initiation, at one week and three week after pod initiation, pod length, number of seeds and hard seeds per pod, germination and emergence rate under field and laboratory conditions.

The data on these characters were subjected to statistical analysis (ANOVA).

The water stress affected the plant characters such as plant height, pod length, pod girth, number of seed and hard seeds per pod. Significant differences were found among treatments for these characters. The plants without any sort of water stress showed the best performance in plant growth pattern and produced best quality seeds.

It was observed that the long period of water stress, 4 - 6 days in the study, at the initiation of first pod and two weeks after it affected the plant growth and quality of seeds, determined by germination (viability) and emergence rate (vigour), to a

remarkable extent, at a significant level (P < 0.05) compared to the control, without any moisture stress conditions

Long period of moisture stress during pod formation also reduced the number of seeds and increased the hard seeds formed.

due to Dr. 45. Reconstrained - Dear. Faculty as

CONTENT

		Page
ABSTRACT		I
ACKNOWLEDGEMENT		III
CONTENTS		IV
LIST OF TABLES		VIII
LIST OF FIGURES		IX
LIST OF PLATES		X
	ř.	
CHAPTER 1 INTRODUCTION		
1.1 Origin and distribution		2
1.2 Extent of cultivation		- 2
1.3 Importance of okra		3
1.3. 1 Economic importance		3
1.3.2 Medicinal importance	1 .	3
1.3.3 Nutritional importance		4
1.4 Production constraints	1	4
1.5 Justification of research	V _j	5
1.6 Objective of the research	1	6
CHAPTER 2 REVIEW OF LITERATURE		
2.1 Taxonomy of the crop		7
2.1.1 Classification of okra		9
2.2 Botany of crop		9
2.3 Floral biology of the crop		10

	2.4 Water Stress		12
	2.5 Effect of water deficits		13
	2.5.1 Water stress in relation to ontoge	eny	13
	2.5.1.1 Seed germination and seed	dling establishment	14
	2.5.1.2 Vegetative growth		14
	2.5.1.3 Reproductive growth		14
	2.5.2 Effect of water deficits on plant g	growth	15
	2.5.2.1 Cell division and enlargem	ent	16
	2.5.2.2 Differentiation		17
	2.5.2.3 Root – shoot ratios	·	17
	2.5.3 Physiological effect of water stres	SS	18
1 1	2.5.3.1 Photosynthesis		18
	2.5.3.2 Dark respiration		20
1	2.5.3.3 Translocation		20
	2.5.3.4 Partitioning of photosynth	ate	21
	2.5.3.5 Ion uptake		21
	2.5.4 Effect of water stress on seed and fi	ruit formation	22
	2.5.5 Beneficial effects of water stress	V ₁	24
CHAPTE	R 3 MATERIALS AND METHODS	1	
*	3.1 Experiment – 1	f.	26
	3.1.1 Location		26
	3.1.2 Seed source		26
	3.1.3 Treatment		27
	3.1.4 Experimental design		27

2 4 337

3.1.5 Agro	onomic practices		30
3.1.5	5.1 Pot preparation		30
3.1.5	5.2 Manure and fertilizer application	on	30
3.1.5	5.3 Planting		30
3.1.5	5.4 Irrigation		30
3.1.5	5.5 Weed control		31
3.1.6 Meas	surements and observation		31
3.1.6	5.1 Plant height		31
3.1.6	5.2 Length of pod	*	32
3.1.6	5.3 Girth of pod	*	32
3.1.6	6.4 Number of seeds per pod		32
3.1.6	6.5 Number of hard seeds per pod		32
3.1.7 Statis	stiçal analysis		32
7			
3.2 Experime	ent – 2		33
3.2	2.1 Laboratory conditions		33
3.3	2.2 Field conditions		33
3.3	2.3 Observation and measureme	ents V	34
CHAPTER 4 RESULTS	S AND DISCUSSION	1	
Experiment-	- 1		35
4.1 Pla	ant characteristics		35
4.1.1 Plant height at first pod initiation stage			35
4.1	1.2 Plant height at one week after f	first pod initiation	37
4.1	1.3 Plant height at 3 week after firs	st pod initiation	37