PERFORMANCE OF PLANT POPULATIONS RAISED FROM SEED OF PODS AT DIFFERENT POSITIONS ON OKRA PLANTS

(Abelmoschus esculentus)

by **EANTHASAMY SIVALINGAM**

A RESEARCH REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE ADVANCED COURSE
IN
AGRICULTURAL BIOLOGY

FOR

THE DEGREE OF THE BACHELOR OF

X 153 Br

FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRI LANKA
VATHARUMOOLAI
CHENKALADY

1996

APPROVED BY

Y. Dmh. ely

SUPERVISOR
DR. V. ARULNANDHY
SENIOR LECTURER
DIVISION OF AGRICULTURAL BIOLOGY
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRI LANKA
VANTHARUMOOLAI
CHENKALADY

DATE: 26.03.97

4 4392

HEAD/ AGRONOMY
DR. (MRS.)T. MAHENDRAN
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRILANKA
VANTHARUMOOLAI
CHENKALADY.

5

DATE: 26/3/97

ABSTRACT

A field experiment was carried out to study the performance and yield of okra plant population raised from seeds of pods at different positions on okra plants.

The ten types of seed used were extracted from 1st to 10th pods okra plants and all entries were arranged in Randomized Complete Block Design (RCBD) with three replicates. After the emergence of seedlings, data collection commenced and measurement as well as observation were made on plant height at first flowering, plant height at first harvest, plant height at last harvest, length of pod, width of pod, weight of pods and number of pods per plant. The collected data were subjected to analysis of variance (ANOVA) and correlation analysis was also performed.

Significant differences in the plant height at first flowering, plant height at first harvest, plant height at last harvest, pods per plant, pd weight, pod length and pod yield were noticed among plants raised from seeds of pods at different positions.

The plant population raised from seeds of 3rd, 4th, and 5th pods showed the best performance with respect to plant growth and development and pod yield, determined through data collected on various plant characters, yield components and pod yield. These groups of plants were found to be significantly better than the rest in pod yield and many other characters.

A highly significant correlation and direct relationship were seen between yield and other characters such as pods per plant, pod weight, pod length, plant height and there by improving one or more of these characters may increase the yield to satisfactory level.

Seeds of different treatment (1st to 10th pods) were tested for germination under laboratory and field conditions. The germination percentage and emergence rate were higher in seeds taken from the 2nd, 3rd, 4th, and 5th compared to others and the germination percentage was found more than 85% in the seeds taken from 2nd, 3rd, 4th and 5th pods after 4 days of planting under laboratory condition and little less than 85% under field conditions. The germination and emergence rate of okra seeds under laboratory conditions were estimated to be higher than under field conditions.

A preliminary experiment was carried out on keeping quality of pods under laboratory conditions. The observation and measurement were made for five days on loss in pod weight, pod appearance, colour changes and fibre nature of pods. It was noted that the weight loss was 8% after 1st day and 31% after 5th day in storage. Colour of pods change gradually from green to brown within 5 days and pods become unacceptable quality only unto be 2nd days under ambient storage conditions.

CONTENTS

		page
	ABSTRACT	I
	ACKNOWLEDGMENT	III
	CONTENTS	IV
	LIST OF TABLES	VIII
	LIST OF FIGURES	IX
	LIST OF FLATS	X
CHA	APTER- 1 INTRODUCTION	1
1.1	Okra (Abelmoschus esculentus (L) monech)	1
1.2	Extent of cultivation	1
1.3	Origin and geographic distribution	2
1.4	Importance of okra	2
	1.4.1 Nutritional importance	2
	1.4.2 Uses of okra	3
	1.4.3 Economic importance and international trade	4
	1.4.4 Medicinal important	4
1.5	Crop improvement/ Breeding efforts	4
	1.5.1 Plant genetic resource activities	5
1.6	Production constraints	, 5
1.7	Justification of research	6
1.8	Objective of the study	6
СНА	PTER 2 REVIEW OF LITERATURE	8
2.1	Taxonomy of the crop	8
	2.1.1 Classification	8
2.2	Botany of crop	- 9
	2.2.1 Growth and development	10
2.3	Floral biology	10

2.4	Ecolo	gical adaptation	11
	2.4.1	Seed production	12
	2.4.2	Crop improvement	12
2.5	Gemp	lasm multiplication and characterization	12
	2.5.1	Germplasm conservation	13
2.6	Seed 1	physiology	13
	2.6.1	Seed germination	13
	2.6.2	Environmental factor affecting germination	14
		2.6.2.1 Water	14
		2.6.2.2 Air	14
		2.6.2.3 Temperature	14
		2.6.2.4 Light	14
		2.6.2.5 Enzyme activation	15
2.7	Vigou	r of different seed types	15
	2.7.1	Seeds of maize	15
	2.7.2	Vigour of pods at different position in winged bean	15
	2.7.3	Seed size and density of field crop	16
	2.7.4	Seed germination	16
2.8	Viabili	ity of seeds and seedling vigour	16
	2.8.1	Viability test	. 16
	2.8.2	Manifestation of vigour seed	17
	2.8.3	Seedling evaluation	17
		2.8.3.1 Normal seedling	18
		2.8.3.2 Abnormal seedling	18
		2.8.3.3 Hard seededness	18
2.9	Post h	arvest quality	. 19
		2.9.1 Pod character	20
2.10	Variet	ies available in Sri Lanka	20
CHAF	TER-3	MATERIALS AND METHODS	22

EXPE	RIMENI-I	22
3.1.1	Location	22
3.1.2	Seed source	22
3.1.3	Treatment	22
	3.1.4.1 Experimental design	23
3.1.4.2	2 Plot Size	23
3.1.4.3	3 Spacing	23
	3.1.4.4 Effective rows	26
3.1.5	Land preparation	26
	3.1.5.1 Manure and fertilizer application	26
	3.1.5.2 Planting	26
	3.1.5.3 Irrigation	26
	3.1.5.4 Pest and disease control	27
	3.1.5.5 Weed control	27
3.1.6	Measurements and observation	27
	3.1.6.1 Yield estimation	28
	3.1.6.2 Plant height	28
	3.1.6.3 Days to first harvest	28
	3.1.6.4 Length of the fruit	28
,	3.1.6.5 Width of the pod	,28
	3.1.6.6 Leaf count	28
	3.1.6.7 Number of pods per plant	28
	3.1.6.8 Score on yellow vein mosaic virus (YVMV)	28
	3.1.6.9 Statistical analysis	29

3.1

3.2	EXPERIMENT-2 Viability and Vigour Test	29	
	3.2.1 Test for laboratory and field germination	29	
	3.2.1.1 Laboratory condition	29	
	3.2.1.2 Field condition	30	
	3.2.2 Observation and measurement	30	
3.3	EXPERIMENT-3	31	
	3,3.1 Test for keeping quality of pods	31	
	3.3.2 Observation and measurement	31	
CHAI	PTER- 4 RESULTS AND DISCUSSION	32	
	EXPERIMENT-1	32	
4.1	Plant Height	32	
	4.1.1 Plant height at first flowering	32	
	4.1.2 Plant height at first harvest	34	
	4.1.3 Plant height at Last harvest	34	
4.2	Number of pods per plant	35	
4.3	Pod length	35	
4.4	Pod weight	37	
4.5	Pod width	37	
4.6	Leave number	37	
4.7	Pod yield	42	
4.8	Correlation analysis	44	
EXPE	ERIMENT-2	46	
EXPE	ERIMENT-3	50	
ÇHAI	PTER-5 CONCLUSION	53	
LITE	RATURE CITED \	57	
APPE	APPENDIX 5		

APPENDIX