
PERMANENT REFERENCE

DEVELOPMENT AND EVALUATION OF A FABRICATED, LOCALLY DESIGNED AND

LOW-COST DRIP IRRIGATION SYSTEM

ż

BY

SUNDARALINGAM SIVASANKARAN

50731

AGRICULTURAL ENGINEERING:

FAGULTY OF AGRICULTURE

EASTERN UNIVERSITY

VANTHARUMOOLAI

SRILANKA

2002

ABSTRACT

The dry zone agriculture of Sri Lanka faces a major water scarcity problem and rapid water losses from the root zone. Therefore, it is essential to fabricate a low initial cost and low head drip irrigation system to overcome these limitations.

Hence, an experiment was carried out in the Division of Agricultural Engineering, Faculty of Agriculture, Eastern University, Sri Lanka, to fabricate a low-cost drip irrigation kit with the locally made cheep material and to evaluate the suitability in field with chilli cultivation under sandy regosol condition. The field experiment was conducted at the Eastern University Agronomy farm during May to September 2002.

Three different pressures of 2.0m, 1.5m & 1.0m and three different emitter sizes of 1.6mm, 2.4mm & 3.2mm combination were made for the evaluation of this kit. Highest combination (2.0m X 3.2mm) produced highest in emitting rate (990. 38 ml/h), uniformity of irrigation (95.01%) and wetted radius (16.32 cm). The 1.5 m X 3.2mm combination showed 2nd rank on these parameters.

However, these two combinations and 2.0m X 2.4mm did not show any significant difference on the yield of chilli cultivation. The water use efficiency was higher in (1.5m X 3.2mm) than the highest combination (2.0m X 3.2mm). Moisture content of fresh yield (66.52%) was highest in (2.0m X 3.2mm) combination.

The overall performances are concerned; the combinations of 2.0m or 1.5m with 3.2mm emitter size drip kits were suitable and feasible. However, the economical

CONTENTS

m

	rage	e 110
ABSTRACT		i
ACKNOWLEDGEMENT		iii
CONTENTS		iv
LIST OF TABLES AND FIGURES		ix
CHAPTER-1		1
1.0. INTRODUCTION		1
CHAPTER-2		5
2.0. LITERATURE REVIEW		5
2.1. Water		5
2.1.1. Physiological and Ecological importance of water	1	5
2.2. Soil and its importance		5
2.2.1. Sandy Regosols	\$	6
2.3. Soil – Water relationships	N	6
2.3.1. Retention of Soil Moisture in the field		7
a. Maximum Retentive Capacity (MRC)		7
b. Field Capacity (FC)		7
c. Critical Point (CP) and Management Allowable Deficit (MAD)		7
d. Wilting Point (WP)		8

2.5.4.9.1. Drum Kit drip irrigation system in India and Nepal	30
2.5.4.10. Advantages and disadvantages of bucket and drum drip kits irrigation systems	31
CHAPTER –3	33
3.0. MATERIALS AND METHODS	33
3.1. Introduction	33
3.2. Description of the field	34
3.3. Description of the soil	35
3.4. Design of Drip irrigation kit	35
3.5. Fabrication of Drip kit	37
3.5.1. Tank and head preparation	37
3.5.2. Filter	38
3.5.2.1. Purpose of designing of filter	38
'3.5.3. Delivery main and sub main installation	40
3.5.4. Laterals.	41
3,5.5. Fabrication of emitters	41
3.6. Experimental field lay out	42
3.6.1. Selection of treatment parameters	43
3.7. Suitability of chilli cultivation	45
3.8. Experimental procedures	45
a. Land preparation.	45
	45
b. Transplanting.	40

vi

e. Total Available Water Capacity (TAWC)	9
f. Design Root zone (Rz)	9
2.4. Plant Water Balance	10
2.4.1. Evapotranspiration (ET)	10
2.4.2. Pan evaporation (Ep) and potential transpiration (Eo)	11
2.4.3. Crop coefficient (kc)	11
2.4.4. Water use Efficiency (WUE)	12
2.5. Irrigation Technology.	12
2.5.1. Irrigation Uniformity	13
2.5.1.1. Agronomic importance of Uniformity	13
2.5.2. Design considerations of irrigation	13
2.5.3. Technology gap	14
2.5.4. Micro irrigation	15
2.5.4.1. Drip irrigation	19
¹ 2.5.4.2.Low-cost and Low-head drip irrigation	21
2.5.4.3. Types of low-head drip systems	22
2.5.4.4. Gravity drip irrigation	23
2.5.4.5. Bucket and drum drip kits	24
2.5.4.6. Common problems on low-head drip	25
2.5.4.7. Adaptation for land slope	25
2.5.4.8. Improved low-head drip kits for very-small farms	27
2.5.4.9. Other experience of Bucket drip Irrigation Kit	28

v

c. Fertilizer application			46
d. Weeding			46
e. Installation of drip irrigation kit			46
3.9.Data collection			46
3.9.1. Emitting rate			46
3.9.2. Wetted radius			47
3.9.3. Yield of chilli			47
3.9.4. Uniformity of irrigation			47
3.9.5. Water use efficiency			48
3.10.Data analyse			48
CHAPTER –04			49
RESULTS AND DISCUSSION			49
4.1. Evaluation of fabricated Drip irrigation kit			50
4.1.1. Average emitting rate		Ś	50
4.1.2. Uniformity of irrigation			52
4.1.3. Soil wetting pattern			54
4.2. Suitability of chili cultivation	2		56
4.2.1. Fresh yield			56
4.2.2. Dry Yield			58
4.2.3. Water content of yield			60
4.2.4. Water efficiency (WUE)			61