PERMANENT REFERENCE

DESIGN AND DEVELOPMENT OF AN EFFECTIVE MANGO HARVESTING DEVICE.

BY HAJA MOHIDEEN MOHAMED RISVY

57595

AGRICULTURAL ENGINEERING
FACULTY OF AGRICULTURE
ESTERN UNIVERSITY
CHENKALADY
SRI LANKA
DECEMBER 2004

ABSTRACT

Mango (*Mangifera indica*) is known as the king of fruits and it is one of the oldest fruits cultivated by man. Where possible, mangoes can be harvested by hand from the ground and by snapping the mangoes from the stem. Fully mature fruit will detach easily, whereas half-mature fruit will not. Where ever, harvesting by hand from the ground is not possible, harvesting tools are used. The mostly used tool has a long pole with a iron ring and a small bag under the iron ring to catch the fruit. This existing design is time consuming method and producing high damage to mango.

In order to overcome the difficulties in existing and hand picking mango harvesting technique, an improved mango harvester was developed.

Cutting edges, holding poach; nylon chute, galvanized pipe and cable operating mechanism were the main compound in the improved mango harvester. Holding poach was made into two halves and which was operated using cable operating mechanism. Cutting edges were made on the top of the holding poach. When pulling the cable outward holding poaches are open, one it is released the holding poaches are closed. Cable was extended up to end of the galvanized pipe. Harvested mangoes could be collected and directed towards the ground through nylon chute.

Harvesting was done in one hour in each trees and harvested mango were counted separately from each mango trees. Sharpness of the cutting edge, capacity of the holding poaches and efficiency of the operating mechanism was evaluated in this time.

During the harvesting of mango using improved mango harvester, mango was cut with a piece of pedicle (2.5 to 5 cm) with minimum bruising effect, therefore, the latex staining was reduced in mango fruits. Therefore, post harvest losses were minimized.

Mangoes were harvested continuously in the improved mango harvester because; it contained nylon chute pathway directed towards the ground. Therefore, harvested mangoes were directed to the ground; therefore, continuous harvesting was possible. And also mangoes were fallen on the ground without damage. Harvesting rate was higher in improved mango harvester (212/h) than that of traditional method (183/h) and hand picking (143/h). Harvesting rate was high in lower height of the tree in all method of harvesting, once the height increase, the harvesting rate was reduced.

CONTENTS

Page N	10
ABSTRACT	
ACKNOWLEDGEMENTII	
CONTENTS V	I
LIST OF FIGURES	-
LIST OF TABLES	XI
CHAPTER 1	
1.0 INTRODUCTION	1
1.1 Broad objective	5
1.2 Specific objectives	5
CHAPTER 2	
2.0 LITERATURE REVIEW	6
2.1 Mango	6
2.1.1 Origin and distribution of mango	6
2.1.2 Description of mango tree	7
2.1.3 Variety	8
2.1.4 Area and Production	8
2.1.5 Morphology of mango fruit	10
2.1.6 Composition and uses	10
2.1.7 Processing of mango	13
2 1 7 1 Canned mango juice	13

2.1.7.2 Mango puree	13
2.1.7.3 Dehydrated mango puree	13
2.1.7.4 Mango jam	14
2.1.7.5 Dehydrated pickled mango	14
2.1.7.6 Canned mango chudney	14
2.1.7.7 Dehydrated mango candy	14
2.1.7.8 Frozen mangoes	15
2.1.8 Other uses of mango	15
2.1.8.1 Seed kernels	15
2.1.8.2 Seed fat	15
2.1.8.3 Wood	16
2.1.9.4 Bark	16
2.1.9.5 Gum	16
2.1.9.6 Medicinal Uses	16
2 Post harvest handling of mangoes	17
2.2.1 Quality criteria	17
2.2.2 Harvest maturity	18
2.2.2.1 Fully matured fruit	19
2.2.2.1 Half matured fruit	19
2.2.2.2 Immature fruit	19
2.2.3 Ripening	21
2.2.4 Harvesting	22
2.2.5 Field heat removal	23

2.2.6 Grading	23
2.2.7 Pack house operations	24
2.2.8 Packaging	25
2.3 Method of harvesting	26
2.3.1 Hand picking	26
2.3.2 Shaking the branches	28
2.3.3 Harvesting by picking poles	28
2.3.4 Picking pole with bamboo net	30
2.3.5 Picking pole with iron ring (Existing design in Sri Lanka)	31
2.4 Storage	32
2.5 Potential post harvest losses	33
2.5.1 Mechanical damage	33
2.5.2 Low temperature	34
2.5.3 Pathological factors	34
2.5.4 Anthracnosc (Colletotrichum gloeosporioides)	34
2.5.5 Stem end rot (Diplodia natalensis)	35
2.5.6 Rhizopus rot (Rhizopus oryzae)	35
2.5.7 Jelly seed	35
CHAPTER 3	180%
3.0 MATERIALS AND METHODS	36
3.1 Location and period of the study	36
3.2 Materials selection	36
3.3 Design methodology	36

3.3.1 Design of holding poach	36
3.3.2 Cutting edges of operating mechanism	37
3.3.3 Collection pathway of mango	39
3.3.4 Galvanized pipe	4()
3.4 Testing and Evaluation	41
3.4.1 Selection of testing area	41
3.4.2 Selection of mango tree	41
3.4.3 Evaluation of different component of improved mango harvester	43
3.4.4 Testing	43
3.4.4.1 Testing of improved mango harvester	43
3.4.4.2 Testing of picking pole with iron ring (existing design)	44
3.4.4.3 Testing of Hand picking	44
CHAPTER 4	
4.0 RESULTS AND DISCUSSION	45
4.1 Evaluation of the different components in improved mango harvester	45
4.1.1 Evaluation of cutting edges	45
4.1.2 Evaluation of holding poach	45
4.1.3 Evaluation of nylon chute pathway	46
4.1.4 Evaluation of operating mechanism	46
4.2 Testing in Willard mango trees	. 47
4.2.1 Effect of different height of Willard mango tree on harvesting rate	. 48

4.2.2 Comparison of the performance of improved mango harvester with other mongo harvesting technique	49
4.3 Testing in Karutha columban mango tree	50
4.3.1 Effect of different height of Karutha columban mango tree	51
4.3.2 Comparison of the performance of improved mango harvester with other mongo harvesting techniques	52
4.4 Testing in Vellai columban mango tree	53
4.4.1 Effect of different height of Vellai columban mango tree	54
4.4.2 Comparison of the performance of improved mango harvester with other mongo harvesting techniques	55
4.5 Comparison of the harvesting efficiency in different mango varieties	56
4.6 Evaluation of different harvesting techniques in different varieties	57
CHAPTER 5	
5.0 CONCLUSIONS	60
RECOMMENDATION AND SUGGESTION	61
REFERENCE	62