PERMANENT REFERENCE

STUDIES ON THE HOST RANGE OF BRUCHID BEETLE,

(Callosobruchus chinensis.L)

By

RIKAZA MOHAMMADH ALI

A Research report

Submitted In Partial Fulfillment of the Advance Course

In

AGRICULTURAL BIOLOGY

For

The Award of the Degree of Bachelor of Science in Agriculture Faculty of Agriculture

Eastern University Sri Lanka 2004

Approved By

2'260'

Supervisor Prof.S.Raveendranath Vice Chancellor Eastern University Sri Lanka

57608

Head/Agronomy Dr.K.Premkumar Faculty of Agriculture Eastern University Sri Lanka

Date. 15 02 2005

PROCESSED Main Library, EUSI

ABSTRACT

Callosobruchus chinensis (Linnaeus) endanger stored legume seeds throughout Sri Lanka. The present study was conducted to test the host range of *Callosobruchus chinensis* on cowpea (*Vigna unguiculata*), green gram (*Vigna radiata*), black gram (*Vigna mungo*), soybean (*Glycine max*) and masur dhal (*Lens culinaris*). The development period, number of adult emergence and host preference of *C. chinensis* are the parameters considered in this study. Olfactometer bioassays were performed to evaluate the effect of host preference on the orientation of selected pulse species.

Significant differences were observed in development period, number of adult emergence and host preference of *C. chinensis*. Adult emergence occured 22.78 ± 0.02 days in cowpea followed by green gram 24.78 ± 0.04 days, black gram 24.45 ± 0.3 days and soybean 28.34 ± 0.29 days. No adult development occured in masur dhal. Mean adult emerged on cowpea was high 241.00 ± 9.33 , the black gram and green gram has $225.11 \pm$ 6.52 and 220.22 ± 4.69 respectively. 72.33 ± 7.70 mean adult emergence was recorded in soy bean.

The host preference of *C. chinensis* towards cowpea was high followed by green gram, black gram and soybean. However masur dhal was not preferred at all. The affinity towards cowpea by this insect reared with different host species shows that storing these pulses together may lead to significant losses. So that, storing of masur dhal along with these pulses has the potential to reduce the attack of *C. chinensis* due to preventing the dissemination.

CONTENTS	Page No
ABSTRACT	I
ACKNOWLEDGEMENT	II
CONTENTS	· III
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF PLATES	VIII
CHAPTER 1	. 1
1.0 Introduction	• 1 9
1.1 Objective of this study	6
CHAPTER 2	. 7
2.0 Review of literature	7
2.1 Classification	7
2.2 Origin and distribution	7
	. 8
2.3 Morphology	. 10
2.4 Biology and Ecology	λų.
2.5 Host range of Callosobruchus chinensis	11
2.5.1 Host specificity in relation to chemical	1 . 31
composition of seeds.	12
2.5.2 Host specificity in relation to seed characteri	stics 14
2.5.3 Host specificity in relation to olfaction	17

2.5.4 Host specificity in relation to preference	e		. 34
of C. chinensis			18
2.6 Mating behavior of C. chinensis			19
2.7 Oviposition behavior of <i>C. chinensis</i>			20
2.8 Life history and variation in development			21
2.9 Biotypes			22
2.10 Damages			24
2.11 Control		3	25
CHAPTER 3			29
3.0 Materials and methods			29
3.1 Collection of material			29
3.1.1 Insect			29
3.1.2 Seeds of pulses			29
3.1.3 Disinfection of pulses seeds	A .		29
3.1.4 Mass cultures of C. chinensis		•	30
3.1.5Collection of one day old weevil		6	31
3.1.5 Separation of males and females			31
3.2 Experiment		1	31
3.2.1 Method 1			31
3.2.2 Method 2			33
3.3 Measurements			33