PERMÁNENT REFERENCE STUDY ON THE SUITABILITY OF LOCALLY AVAILABLE ROOT AND TUBER SPECIES OF **BATTICALOA REGION FOR CHIPS MAKING**

By

NIROSHINI YOHEESWARAN

A Research report

H1652 0th Submitted In Partial Fulfillment of the Advance Course

In

AGRICULTURAL CHEMISTRY

For

The Award of the Degree of Bachelor of Science in

Dr.K.Premakumar,

Supervisor,

Sri Lanka,

Agriculture Faculty of Agriculture Eastern University Sri Lanka 2004

Approved By

57602

Dr.K.Premakumar, Head/Dept.of Agronomy, Faculty of Agriculture, Eastern University, Sri Lanka,

Date: 15.02.2005

Head/Dept.of Agronomy,

Faculty of Agriculture,

Division of Agri.Chemistry,

15.02.2005 Date:-

PROCESSED Main Library, EUSL

LIBRA

University,

2005

Sri Lan

ABSTRACT

Roots and tuber crops comprise a large amount of species and play an important role in the meal planning of people living in Batticaloa region. Therefore, the present study was conducted to introduce a value addition to some of the roots and tubers grown in Batticaloa region, such as Arial potato, King Yam, Siru kilangu, Elephant Foot Yam and Arrow root. Thin and rectangular chips prepared from these roots and tubers were fried in vegetable oil and they were subjected to chemical and organoleptic evaluation. Significant differences in chemical and organoleptic characters were found among them. Crude protein content seemed to be highest in thin chips of elephant foot yam, moderately high levels were present in other thin chips and rectangular chips contained relatively low protein content than the others. Fat percentage of chips ranged from 2.07% and 0.5% in thin chips of elephant foot yam and rectangular chips of king yam respectively. There wasn't any significant variation found in ascorbic acid content between thin chips and rectangular chips, mean while highest amount of ascorbic acid content 25.9mg/100g was found in thin chips of sirukilangu and the lowest 15.14mg/100g was found in rectangular chips of king yam. Rectangular chips of king yam exhibited highest pH value 6.3 while the thin chips of arial potato exhibited lowest pH 5.3. Acording to organoleptic evaluation results, thin chips of elephant foot yam were considered superior to others while the thin chips of arial potato received score next to it.

Thin chips of elephant foot yam were fried in sunflower oil, vegetable oil and coconut oil and stored fore one month in air tight glass container. Chemical evaluation, organoleptic evaluation and microbial evaluation were conducted at weekly intervals. The chips fried in sunflower oil were considered to be superior

I

when freshly eaten than the chips fried in vegetable oil and coconut oil, but to store for one month storage periods, chips fried in coconut oil were mostly suited than the chips fried in other two oils. Chips fried in sunflower oil could be stored only for 3 weeks storage periods while the chips fried in coconut oil and vegetable oil were good up to one month storage.

Head (gronant) who rendered valuable advices, mercentions

1

-

CONTENTS	Page No	
ABSTRACT		Ι
ACKNOWLEDGEMENT		III
CONTENTS		IV
LIST OF TABLES	IX	
LIST OF FIGURES	XI	
LIST OF PLATES	XIII	
2.7.2 Arolds		
CHAPTER 1		1
1.0 INTRODUCTION		1
1.1 Rationale		1
1.2 Objectives		. 5
2.7.2.5 Modification of Plaster		
CHAPTER- 2		6
2.0 LITERATURE REVIEW		6
2.1 Origin and Distribution		6
2.2 Classification		7
2.2.1Yam		7
2.2.2 Elephant foot yam		8
2.2.3 Arrowroot		8
2.3 Morphology		9
2.3.1Yam		9
2.3.2 Elephant foot yam	\	10
2.3.3 Arrowroot		10
2.4 Nutritional composition of roots and tubers		11
2.4.1Carbohydrate content	1	12
2.4.2 Protein content		14
2.4.3 Lipid content		16
2.4.4 Vitamin content		17
2.4.5 Mineral content		19
2.5 Effect of Processing On Nutritional Value	. 21	
2.6 Toxic Substances and Antinutritional Factors	25	

2.7 Production of value added products	28
2.7.1Yam	28
2.7.1.1 Pounded yam	28
2.7.1.2 Yam flour	28
2.7.1.3 Yam flakes	28
2.7.1.4 Yam chips	28
2.7.1.5 Canned product	29
2.7.1.6 Ice cream and alcohol production.	29
2.7.2 Aroids	29
2.7.2.1 Starch production	29
2.7.2.2 Syrup Production	30
2.7.2.3 Gum Production	30
2.7.2.4 Renewable Energy Source	30
2.7.2.5 Modification of Plastics	31
2.7.2.6 Aroid-based Edible Films for Modified	a di
Atmosphere Packaging (MAP)	31
2.7.2.7 Manufacture of Animal Feedstuff	32
2.7.2.8 Corm flour	33
2.7.2.9 Chips	33
2.7.3 Arrow root	33
2.7.3.1 Use in Commercial Starch Production	33
2.8 Deep Fat Frying	34
2.8.1 The General Mechanism of Deep Fat Frying	34
2.8.2 Fat changes and reactions during frying	35
2.8.2.1 Colour formation	35
2.8.2.2 Oxidation	36
2.8.2.3 Polymerization	37
2.8.2.4 Hydrolysis	37
2.8.3 Factors should be considered in good frying practices	38
2.8.3.1 Frying Temperatures	38
2.8.3.2 Fat Turnover	39
2.8.3.3 The frying fat	40
2.9 Sensory Evaluation	41
2.9.1 Definition	41

	2.9.2 Uses of Sensory Evaluation	42
	2.9.3 Hedonic scale	43
	2.9.4 Factors influenceing sensory measurement	44
	2.9.4.1 Stimulus error	44
	2.9.4.2 Expectation error	44
	2.9.4.3 Enhancement	45
	2.9.4.4 Mutual suggestion	45
	2.9.4.5 Error of habituation	45
	2.9.4.6 Capriciousness vs. timidity	46
	2.9.4.7 Presentation	46
	2.9.4.8 Halo effect	46
	2.9.5 Preparation of sample for the test	47
	2.9.5.1Testing area	. 47
	2.9.5.2Testing setup	47
	2.9.5.3Lighting	48
1	2.9.5.4Testing time	48

CHAPTER 3

3.0 MAT	TERIALS AND METHODS	49
3.1 Locat	ion and period of study	49
3.2 Samp	le source and size	49
3.3 Exper	rimental design	50
3.	3.1 Experiment 1 – Study on chips making	51
	3.3.1.1 Preparation of chips	51
	3.3.1.2 Organoleptic evaluation of freshly made chips	51
	3.3.1.3 Chemical evaluation of characteristics of freshly	
R'	made chips	51
. 3.	3.2 Experiment 2-Study of chips fried in different frying oils	52
	3.3.2.1 Preparation method of chips	52
	3.3.2.2 Organoleptic evaluation of stored chips	52
	3.3.2.3 Evaluation of chemical characteristics of stored	
	chips.	53
	3.3.2.4 Microbial evaluation of stored chips	53

3.4 Chemical analysis of Chips	53
3.4.1 Moisture content	53
3.4.3 pH	54
3.4.4 Ascorbic acid	55
3.4.5 Ash content	56
3.4.6 Crude Fat	57
3.4.7 Protein content	58
3.5 Sensory evaluation	60
3.5.1 Coding the samples	60
3.5.2 Evaluation of sample	61
3.6 Microbial evaluation of chips	61
3.6.1 Preparation of Potato Dextrose Agar medium (PDA)	61
3.6.2 Sterilization of glasswares and needles.	62
3.6.3 Inoculation of sample	62
3.6.4 Identification of pathogen	62
3.7 Data Analysis	62
the second se	. XYI
CHAPTER 4	63
4.0 RESULTS AND DISCUSSION	63
4.1 Experiment 1 – Study on chips making.	63
4.1.1Proximate composition of fried chips	63
4.1.1.1 Crude protein	63
4.1.1.2 Moisture	64
4.1.1.3 Ash	65
4.1.1.4 Crude fat	65
4.1.1.5 Ascorbic acid	66
4.1.1.6 pH	67
4.1.2Organoleptic evaluation of fried chips	68
4.1.2.1 Colour	69
4.1.2.2 Texture	69
4.1.2.3 Taste	69
4.1.2.4 Flavour	70
4.1.2.5 Overall eating quality	70

4.2 Experiment 2 – Study on chips fried in different frying oils	72
4.2.1 Proximate composition of chips fried in	
different frying oils	72
4.2.2 Organoleptic evaluation of chips fried in different	ent oils 76
4.2.3 Evaluation of microbial characteristics of chips	fried
in different oils	78
CHAPTER 5	79
5.0CONCLUSION	79
5.1 Suggestions for future research	80
Table 2.4: Categorization of yars species based as follows starch	
LITERATURE CITED	81
APPENDICES	XIV
Appendix-1	XV
Appendix-2	XVI
Appendix-3	XVII
Appendix-4	XXIII
Appendix-5	XXVIII

nof Anowroot (Moranda real

yan queies per 100-g edible luber)

VIII

Tatal 2.11, Mineral composition of Elephani foct yam

4