INVESTIGATING THE EFFECT OF MOISTURE STRESS ON SELECTED AGRONOMIC PARAMETERS - 01 OF TOMATO

(Lycopersicon esculentum Mill.)

AT DIFFERENT GROWTH STAGES

BY SELVARASHA MURALEESWARAN

DEPARTMENT OF AGRONOMY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2007.

PROCESSED Moin Library, EUSL

ABSTRACT

Water is an essential input for successful crop production. Increasing competition for water from the various sectors will further limit its availability for agriculture. Hence, it is imperative to use it more judiciously.

This experiment was conducted on tomato (*Lycorpersicon esculentum*) to evaluate the effect of moisture stress on selected agronomic parameters such as Leaf Area Index (LAI), Root Length Density (RLD) and Specific Leaf Area (SLA) of tomato in the Eastern region. The tomato (*Lycorpersicon esculentum*) is a major vegetable crop in Sri Lanka and throughout the world also, for their fresh fruits and another processed food. This crop is a one of the best crop for home gardener in selecting crop for planting botanically.

The experiment was carried out in the Agronomy Farm of Eastern University of Sri Lanka, Vantharumulai located in Eastern region during the Yala season from April 2007 to August 2007. Five treatments were defined according to water stress imposed during different growth stages. Treatment 1 served as control, in treatment 2 as moisture stress was imposed during vegetative stage, treatment 3, 4 and 5 served as moisture stress given orderly at flowering, early fruiting and fruit ripening stage and treatments were arranged in Random Complete Block Design with four replicates in accordance to the recommended practices of Department of Agriculture (DOA) with relation to farmer adaptation at eastern region. The measurements were done on the 5th day from the commencement of the stress cycle during the vegetative stage, flowering stage, early fruiting and fruit ripening stage and the measured data were analyzed statistically using SAS package linear model (ANOVA).The result of this experiment showed significant differences on Leaf Area Index (LAI), Root Length Density (RLD) and Specific Leaf Area (SLA) and yield.

Moisture stress reduced LAI, SLA and RLD than control treatment irrespective of the growth stage. The LAI, SLA and RLD showed significantly highest reduction at flowering stage, when compare to other stages. Water stress during the flowering stage showed the highest yield reduction than other stages. So, the flowering stage was found as the most critical stage to water stress. The timing of irrigation on cultivation according to the growth stages of crop will reduces the wastage of water, can save and get more yields from a particular amount of water during the water shortage period. And thus could be adjusted in a way that less water stress is experienced by these plants during the flowering stage in order to sustain the yield.

3.

Key words: Leaf Area Index (LAI), Root Length Density (RLD), and Specific Leaf Area (SLA).

TABLE OF CONTENTS

		Page No.
ABSTRACT		I
ACKNOWLEDGEMENT		III
TABLE OF CONTENTS		IV
LIST OF TABLES		VII
LIST OF FIGURES		VIII
LIST OF PLATES		IX
CHAPTER 01. INTRODUCTION		01
CHAPTER 02. LITERATURE REVIEW		07
2.1 Origin and distribution of Tomato		07
2.2 Taxonomy of tomato		07
2.2.1 Taxonomical calcification of tomato		08
2.3 Tomato is fruit/ vegetable?		10
2.4 Morphology of tomato		10
2.4.1 Plant structure	A .	10
2.4.2 Root		11
2.4.3 Stem		11
2.4.4 Leaves	h.	12
2.4.5 Flowers and inflorescence		
2.4.6 Fruit	1	12
2.4.7 Seed		12
2.5 Basis of water stress study		13

2.6 Causes and development of water stress		14
2.7 Effect of water stress on plants		14
2.8 The relations between water stress and ontogeny		14
2.8.1 Seed germination seedling establishment stages		15
2.8.2 Vegetative growth stage		15
2.8.3 Reproductive growth		16
2.9 Effects of water stress on growth		16
2.9.1 Cell division, cell enlargement and cell differentiation		16
2.9.2 Effects of water stress on root development		18
2.9.3 Translocation		20
CHAPTER 03. MATREIALS AND METHODS	4	21
3.1 Location		21
3.2 Seeds		21
3.3 Nursery practices		22
3.4 Land preparation		22
3.5 Transplanting		22
3.6 Treatment structure		23
3.7 The experimental design		24
3.8 Rain shelters	N.	25
3.9 Soil moisture determination		25
3.10 Agronomic practices	1	26
3.10.1 The fertilizer application		26
3.10.2 Plant protection measures		26
3.10.3 Weed management		27
3.11 Agronomic measurements		27

	3.9.1 Leaf Area Index (LAI)				27
	3.9.2 Root Length Density (RLD)				27
	3.9.3 Specific Leaf Area (SLA)				28
	3.9.4 Yield				29
	3.9.5 Statistical analysis	na mári Liki			29
СН	APTER 04. RESULTS AND DISCU	SSION			30
4.1	General observations				30
	4.1.1 Regularly watered plants				30
	4.1.2 Water stressed plants				30
	4.1.3 Re-watered plants				31
4.2	Soil moisture characteristic curve				31
	4.2.1 Vegetative stage				32
	4.2.2 Flowering stage				32
	4.2.3 Early fruiting and fruit ripping st	tages			33
4.3.	Agronomic studies				33
	4.3.1 Leaf Area Index (LAI)		A.		33
	4.3.2 Root Length Density (RLD)				36
	4.3.3 Specific Leaf Area (SLA)				39
	4.4 Yield	the second		*	43
СН	APTER 05. CONCLUSIONS		,	1	46
SU	GGESTIONS FOR FURTHER STU	DIES	1		47
RE	FERENCES				48
AP	PENDICES				53