EFFECT OF SOIL MOISTURE DEFICIT STRESS ON SELECTED AGRONOMIC PARAMETERS OF

TOMATO (Lycopersicon esculentum Mill.)

AT DIFFERENT GROWTH STAGES

BY

MYLVAGANAM JEYACHANDRAN

PROCESSED Main Library, EUSt

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2007.

ABSTRACT

A study was conducted in the land of the Agronomy Farm at the Eastern Eastern University of Sri Lanka, Vantharumulai located in Eastern region during the *Yala* season of April 2007 to August 2007 to determine the Agronomic responses of soil moisture deficit stress of Tomato (*Lycorpersicon esculentum*) variety KC 1 during the vegetative, flowering, early fruiting and fruit ripening stage. The experiment was designed out in a Randomized Completely Block Design (RCBD) with five treatments and four replications in accordance to the recommended practices of Department of Agriculture (DOA) with relation to farmer adaptation at Eastern region.

Moisture stress was imposed for different treatments for a period of four days each at the above growth stages. The stress treatment was imposed by with holding water completely at once. The control plants were watered to field capacity for every day. The observation and data measurement were made from ten days after transplanting to harvesting during each stress cycle at different growth stages (vegetative, flowering, early fruiting and ripening stage). Measurement data were analyzed by using SAS (ANOVA) to determine the suitable stage/ stages able to give better yield at moisture stress condition.

In each treatment the Crop Growth Rate (CGR), Net Assimilation Rate (NAR) and Root – Shoot Ratio (RSR) and yield were changed by moisture stress and significant differences were found among them and the plants without any effect of moisture stress on yield / relatively avoidable effect on yield should be the suitable for, it was the long period of moisture stress in the stage of ripening and vegetable through the comparison of moisture stress condition with control treatment without moisture stress.

TABLE OF CONTENTS

	Page	
ABSTRACT		I
ACKNOWLEDGEMENT		п
TABLE OF CONTENTS		IV
LIST OF TABLES		VIII
LIST OF FIGURES		IX
LIST OF PLATES		X
1. INTRODUCTION	2	01
2. LITERATURE REVIEW		08
2.1 Development of water stress		08
2.2 Effects of water deficit stress in relation to ontogeny		09
2.2.1 Seed germination and seedling establishment		09
2.2.2 Vegetative growth		10
2.2.3 Reproductive growth		10
2.3 Effects of water stress on Crop Growth Rate		11
2.4 Effects of water stress on Root - shoot ratio	b)	13
2.5 Effects of water stress on Net Assimilation Rate	1	14
2.6 Beneficial effects of water stress		18
2.7 Tomato		19
2.7.1 Origin and distribution of tomato		19
2.7.2. Taxonomy		20

TI Diremiel classificatio	m	20
2.7.2.1 The Billonnial classificance		21
2.7.3 Types of tomato varieties		01
2.7.4 Morphology of the crop		21
2.7.4.1 Stem		21
2.7.4.2 Leaf		22
2.7.4.3 Root		22
2.7.4.4 Floral morphology		22
2.7.4.5 Fruit		22
2.7.4.6 Seeds		23
		24
2.7.5 Soil		
2.7.6 Climate		24
3. MATERIALS AND METHODS	. als - 11	25
		25
3.1 Location	Pa.	25
3.2 Nursery practices		25
3.3 Field preparation	2	26
3.4 Transplanting	4	26
	1	27
3.5 Treatment structure		29
3.6 The experimental design		30
3.7 Fertilizer application		30
3.8 Plant protection		30
3.9. Soil moisture determination		31

3.10 Agronomic measurements		32
3.10.1 Crop Growth Rate		32
3.10.2 Root – Shoot Ratio		33
3.10.3 Net Assimilation Rate		34
3.11 Harvesting		34
3.12 Statistical analysis		35
4. RESULTS AND DISCUSSION		36
4.1 General appearance of plants	n birt ihner stimmer	36
4.1.1 Regularly watered plants		36
4.1.2 Re – watered plants		37
4.1.3 Water stressed plant		37
4.2 Soil moisture contents		37
4.3 Crop Growth Rate		40
4.4 Root - Shoot Ratio		43
4.5 Net Assimilation Rate	«.	46
4.6 Yield		49
5. CONCLUSIONS	* *	51
6. SUGGESTIONS FOR FUTURE STUDY	1	53
REFERENCES		55

APPENDICES