## STUDIES ON THE EFFECT OF INSECTICIDES ON THE POPULATION DYNAMICS OF WHITEFLIES AND THEIR PARASITOIDS ON BRINJAL PLANTS



## UMARAJINI SIVASUBRAMANIAM





219

FACULTY OF AGRICULTURE
EASTERN UNIVERSITY
SRI LANKA
2006

## ABSTRACT

The integrated control concept emphasizes the importance of both chemical and biological control for pest suppression in agricultural systems. In this study, the effect of four insecticides viz. acetamiprid, imidachloprid, deltamethrin and dimethoate on whitefly (Bemisia tabaci) population and their native parasitoids were evaluated on brinjal plants at the Agronomy farm, Eastern University of Sri Lanka. Insecticides were sprayed twice at 14 days interval during the experimental period. The whitefly population level, encompassing adult and nymph stages and percentage parasitism were monitored at weekly intervals from a day prior to spraying to 14 days after second spraying. The parasitoids, Encarsia cibcensis Loez Avila and Eretmocerus californicus were collected from the research site. Among the collected parasitoids. Encarsia cibcensis Loez Avila were more abundant than Eretmocerus californicus at the research site. Imidachloprid was significantly (P<0.05) reduced the whitefly adult population over control at 14 days after the first spraying. However, overall whitefly adult and nymph populations were not significantly (P>0.05) reduced on any of the insecticide treated plants when compared to those found on the control plants. Imidachloprid and acetamiprid werę significantly (P<0.05) better than the other insecticides; deltamethrin and dimethoate against Bemisia tabaci adult and nymph populations, where the lower overall mean numbers of whitefly adults and nymphs per leaf were recorded. Moreover, the recorded mean percentage parasitism varied widely among the treatments over the study period as 30.42% to 65.33% in acetamiprid, 32% to 56.67% in imidachloprid, 12.22% to 28.2% in deltamethrin, 23.86% to 32.61% in dimethoate and 43.33% to 54.57% in control. Results of this study suggest that acetamiprid could be used in an integrated control program of Bemisia tabaci on brinjal without affecting the activity of the associated parasitoids with Bemisia tabaci.

:

## CONTENTS

| ABSTRACTI                                               |
|---------------------------------------------------------|
| ACKNOWLEDGEMENTII                                       |
| CONTENTSIII                                             |
| LIST OF TABLESVII                                       |
| LIST OF FIGURESVIII                                     |
| LIST OF PLATESIX                                        |
| CHAPTER 1                                               |
| 1 INTRODUCTION1                                         |
| CHAPTER 2                                               |
| 2 LITERATURE REVIEW7                                    |
| 2.1 Brinjal                                             |
| 2.1.1 Origin and Distribution                           |
| 2.1.2 Uses and Nutritional Composition                  |
| 2.1.3 Recommended varieties in Sri Lanka                |
| 2.1.4 Areas of cultivation                              |
| 2.1.5 Extent of cultivation and production in Sri Lanka |
| 2.1.6 Pest problems in cultivation 9                    |
| 2.2 Whitefly as a pest                                  |
| 2.2.1 Taxonomy                                          |
| ,2.2.1.1 Scientific classification                      |
| 2.2.1.2 Identification                                  |
| 2.2.2 Pest status                                       |
| 2.2.3 Origin and distribution                           |
| 2.2.4 Host plants                                       |
| 2.2.5 General life history                              |
| 2.2.5.1 Eggs                                            |
| 2.2.5.2 First nymphal instars                           |

| 2.2.5.3 Second nymphal instars                          | 15 |
|---------------------------------------------------------|----|
| 2.2.5.4 Third nymphal instars                           | 15 |
| 2.2.5.5 Fourth nymphal instars                          | 15 |
| 2.2.5.6 Adults                                          | 16 |
| 2.2.6 Nature of damage                                  | 16 |
| 2.2.6.1 Direct damage                                   | 17 |
| 2.2.6.2 Indirect damage                                 | 17 |
| 2.2.6.3 Virus transmission                              | 17 |
| 2.2.7 Detection                                         | 18 |
| 2.2.8 Behaviour                                         | 18 |
| 2.2.9 Control of whiteflies                             | 19 |
| 2.2.9.1 Cultural and physical control                   | 19 |
| 2.2.9.2 Host-plant resistance                           | 20 |
| 2.2.9.3 Chemical control                                | 20 |
| 2.2.9.4 Biological control                              | 20 |
| 2.2.9.4.1 Predators                                     | 21 |
| 2.2.9.4.2 Parasitoids                                   | 22 |
| 2.2.9.4.3 Pathogens                                     | 23 |
| 2.3 Factors affecting population dynamics of whiteflies | 24 |
| 2.4 Parasitoids of <i>Bemisia tabaci</i>                | 25 |
| 2.4.1 Identification                                    | 25 |
| 2.4.1.1 Encarsia                                        | 25 |
| 2.4.1.2 Eretmocerus                                     | 25 |
| 2.4.1.3 Signiphora                                      | 26 |
| 2.4.1.4 Amitus                                          | 26 |
| 2.4.1.5 Metaphycus                                      | 26 |
| 2.4.2 Recorded parasitoids                              | 27 |
| 2.4.3 Biology                                           | 30 |

|     | 2.5 I | Impact of insecticides on natural enemies                        | 30 |
|-----|-------|------------------------------------------------------------------|----|
|     | 2     | 2.5.1 Effects of insecticides on whitefly parasitoids            | 31 |
|     | 2.6   | Conservation biological control                                  | 32 |
|     | 2     | 2.6.1 Enhanced biological control through selective insecticides | 32 |
| CHA | PTE   | R 3                                                              | 34 |
| 3   | MAT   | TERIALS AND METHODS                                              | 34 |
|     | 3.1 S | Study site and Experimental design                               | 34 |
|     | 3     | 3.1.1 Treatments                                                 | 34 |
|     | 3     | 3.1.2 Field Lay out                                              | 35 |
|     | 3     | 3.1.3 Pot filling                                                | 35 |
|     | 3     | 3.1.4 Basal fertilizer application                               | 35 |
|     | 3     | 3.1.5 Planting                                                   | 36 |
|     | 3     | 3.1.6 Agronomic practices                                        | 36 |
|     | 3     | 3.1.7 Treatment application                                      | 36 |
|     | 3.2 ( | Collection and identification of whiteflies                      | 36 |
|     | 3.3 E | Experiment 1                                                     | 37 |
|     | 3     | 3.3.1 Aim                                                        | 37 |
|     | , 3   | 3.3.2 Methodology                                                | 37 |
|     |       | 3.3.3 Analysis                                                   |    |
|     | 3.4 E | Experiment 2                                                     | 38 |
|     | 3     | 3.4.1 Aim                                                        | 38 |
|     | 3     | 3.4.2 Methodology                                                | 38 |
|     |       | 3.4.2.1 Sampling                                                 |    |
|     |       | 3.4.2.2 Counting of whitefly nymphs                              |    |
|     |       | 3.4.2.3 Placement of samples in plastic bottles                  |    |
|     |       | 3.4.2.4 Humidity maintenance                                     |    |
|     |       | 3.4.2.5 Calculation of percentage parasitism                     |    |
|     | 2     | 3.4.3 Analysis                                                   |    |

| 3.5 Experiment 3                                                            | )          |
|-----------------------------------------------------------------------------|------------|
| 3.5.1 Aim                                                                   | )          |
| 3.5.2 Methodology                                                           | )          |
| 3.5.2.1 Dehydration                                                         | )          |
| 3.5.2.2 Slide mounting                                                      | )          |
| 3.5.2.3 Observation                                                         | Chemical   |
| 3.5.2.4 Identification of parasitoids                                       | 10 ENGLISH |
| CHAPTER 4                                                                   |            |
| 4 RESULTS AND DISCUSSION                                                    |            |
| 4.1 Effect of insecticides on whitefly population                           |            |
| 4.1.1 Effect on whitefly adult population                                   |            |
| 4.1.2 Effect on whitefly nymph population                                   |            |
| 4.2 Effect of insecticides on the associated parasitoids with whiteflies 51 |            |
| 4.3 Overall impact of insecticides on whiteflies and their parasitoids      |            |
| 4.4 Associated parasitoids with Bemisia tabaci                              | )          |
| 4.4.1 Encarsia cibcensis Lopez-Avila                                        | )          |
| 4.4.2 Eretmocerus californicus                                              | )          |
| CHAPTER 5                                                                   |            |
| 5 CONCLUSION AND SUGGESTIONS 62                                             |            |
| 5.1 Conclusion                                                              |            |
| 5.2 Suggestions for future research                                         |            |
| REFERENCES 63                                                               |            |
| PLATES                                                                      |            |
| APPENDICES                                                                  |            |