IDENTIFICATION OF SUITABLE AND EFFICIENT SUBSTRATE FOR THE PRODUCTION OF OYSTER

MUSHROOMS

(Pleurotus ostreatus)

GAYATHIRI THANGAVADIVEL

231

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRILANKA

2007.

PROCESSED Main Library, EUSL

ABSTRACT

Mushroom production can play an important role in managing farm organic wastes when agricultural and food processing by-products are used as growing media for edible fungi. Mushrooms are completely different from growing green plants and do not contain chlorophyll and therefore depend on other plant material (the "substrate") for their food. Small-scale mushroom production represents an opportunity for farmers interested in an additional enterprise and is a specialty option for farmers without much land.

The experiment was carried out to identify the suitable and efficient substrate for the production of oyster mushrooms. It was carried out with seven treatments and three replicates in the mushroom hut belongs to the Department of Agricultural Biology of Eastern University, Sri Lanka. The mushroom species used was *Pleurotus ostreatus*.

The T_1 is the control treatment which is sawdust substrate and the substrate paddy straw, dry leaves, shredded paper, sawdust + paddy straw, sawdust + dry leaves and sawdust + shredded paper are denoted by T_2 , T_3 , T_4 , T_5 , T_6 and T_7 respectively. The average yield in terms of fresh weight, total number of bloom, harvest interval, large bloom percentage, large bloom diameter and weight and small bloom diameter and weight were the parameters used to evaluate the efficiency of substrate in this study. At each harvest from the substrate bags all these parameters were measured.

The results revealed that there were significant differences observed in yield performance in T_5 (sawdust + paddy straw) and T_7 (sawdust + shredded paper) from other treatments T_1 , T_3 and T_6 and also the sawdust + paddy straw substrate showed significant difference from sawdust + shredded paper substrate in yield. It was found that, there was no significant difference in total number of blooms among the substrates except sawdust + shredded substrate (T_7) which has shown significant differences from the treatments T_2 , T_5 and T_6 . There was no any significant difference among the treatments in large bloom percentage and hence, the different substrates do not affect the formation of large blooms.

When analyzing the harvest interval, it was found that there was a significant difference in shredded paper substrate from the treatments T_1 and T_5 and there was no significant difference between the T_1 and T_5 . It was observed that the diameter and weight of the large blooms and small blooms were high in sawdust + shredded paper substrate. There was a positive correlation of large bloom diameter and weight with average yield, significant at p = 0.01.

In the present study; the sawdust + paddy straw (T_5) substrate depicts as efficient substrate than the other substrates because this substrate shows the highest yield, higher number of blooms and large bloom percentage with minimum harvest interval. The sawdust + shredded paper substrate is also considered as a suitable substrate next to T_5 due to the higher yield, large bloom percentage with low harvest interval. The sawdust + dry leaves substrate is found to be the less efficient substrate for the production of oyster mushrooms because of the lowest yield and large bloom percentage with longer time period between two harvests.

П

TABLE OF CONTENTS

Contents	Page No
ABSTRACT	I
ACKNOWLEDGEMENT	
TABLE OF CONTENTS	IV
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF PLATES	XII
CHAPTER 01.INTRODUCTION	01
1.1 In general	01
1.2 Nutritional importance of mushrooms	02
1.3 Medicinal importance of mushrooms	02
1.4 Safe and poisonous mushrooms	03
1.5 Oyster mushrooms	03
1.6 Growing conditions of <i>Pleurotus sp</i>	04
1.7 Drawbacks of oyster (<i>Pleurotus spp</i>) mushrooms	05
1.8 Requirements for mycelial growth	05
1.9 Requirements for Fruiting body formation	06
1.10 The objectives of study	06
CHAPTER 02.REVIEW OF LITERATURE	

2.1	Mushrooms – In general08
2.2	Description of mushrooms10
2.3	Importance of mushrooms11
2.4	Nutritional Value of Mushrooms12
2.5	Medicinal value of Mushrooms13
2.6	Mushroom Cultivation14
	2.6.1 Mushroom culture and spawn14
	2.6.2 Substrates for mushrooms15
~	2.6.3 Growing conditions for mushrooms19
f of	2.6.4 Mushroom cultivation technology
	2.6.5 Oyster Mushroom cultivation22
	2.6.6 Harvesting
2.7	Storage
2.8	Preservation of Harvested Mushrooms25
2.9	Pests and Diseases of Mushrooms
-	2.9.1 Insects and other Pests
	2.9.2 Causes of diseases
CH	APTER 03. MATERIALS AND METHODS
3.1	Location and Weather conditions
	3.1.1 Description of site
	3.1.2 Weather condition

V

3.2	Experimental Procedure	30
3.3	Treatments	
3.4	Mushroom Housing (Hut)	31
3.5	Substrate preparation and filling of bags	32
3.6	Sterilization of substrate	32
3.7	Cleaning the growing house and incubation room	33
3.8	Inoculation of Spawn	
3.9	Control (management) of atmospheric conditions	33
	3.9.1 Watering	34
t a st	3.9.2 Maintenance of temperature and Relative humidity	34
3.10	Collection of Data	34
	3.10.1 Total yield	34
	3.10.2 Total number of bloom	34
	3.10.3 Data of large bloom	34
	3.10.4 Data of small bloom	35
	3.10.5 Harvest interval	35
	3.10.6 Temperature and Relative humidity	35
	3.10.7 Pests and Diseases	35
3.11	The analysis of data	35
CHAI	PTER 04.RESULTS AND DISCUSSION	37
4.1	Effect of substrate on yield of oyster mushroom	37

4.2	Effect of substrate on the total number of bloom of oyster mushroom39
4.3	Effect of substrate on the large bloom percentage of cluster of
	oyster mushroom
4.4	The effect of substrate on the harvest interval of oyster mushroom42
4.5	Effect of substrate on large bloom diameter
4.6	Effect of substrate on large bloom weight45
4.7	Effect of substrate on small bloom diameter of oyster mushrooms46
4.8	Effect of substrate on small bloom weight47
4.9	Effect of substrate on spawn run of oyster mushrooms47
4.10	Correlation between different parameters of oyster mushrooms48
	4.10.1 The average yield and total number of blooms
	4.10.2 The average yield and harvest interval of oyster mushrooms51
	4.10.3 The average yield and large bloom diameter of oyster
	mushrooms51
	4.10.4 The average yield and large bloom weight of oyster \hat{A}_{\perp}
	mushrooms
•	4.10.5 The average yield and small bloom diameter of
	oyster mushrooms
	4.10.6 The average yield and small bloom weight of
	oyster mushrooms

4.10.7 The relationship between average yield and

large bloom percentage
4.10.8 The total number of bloom and harvest interval
4.10.9 The total number of bloom and large bloom percentage55
4.10.10 The efficient substrate for oyster mushroom
(Pleurotus ostreatus) production
4.11 Pests and Diseases
4.11.1 Pests
4.11.2 Diseases
CHAPTER 05.CONCLUSION
LITERATURE CITED
APPENDIX

1.

A