

COMPARATIVE NUTRITIONAL STUDY AND MINIMAL PROCESSING OF DARK GREEN LEAFY VEGETABLES FOUND IN BATTICALOA DISTRICT

266

BY

SURAIYA MOHAMED NOORUL MUBEEN

A RESEARCH REPORT SUBMITTED FOR

MASTER OF SCIENCE

IN

FOOD PROCESSING TECHNOLOGY

OF

DEPARTMENT OF AGRICULTURAL CHEMISTRY,

FACULTY OF AGRICULTURE

ASTERN UNIVERSITY OF SRI LANKA

2007

Thuhanolman

Dr T Mahendran

Supervisor

Dept of Agric.chemistry

Faculty of Agriculture

Eastern University

Date 29, 11: 2007

Dr. (Mrs). T. Mahendran Head / Dept. of Agric. Chemistry, Faculty of Agriculture Eastern University, Sri Lanka. Approved By

Dr K Premkumar

Coordinator/MSc Programme

Dean,

Faculty of Agriculture

Eastern University

Date-29 - 11 - 200 7

DEAN
Faculty of Agriculture
Eastern University, Sri Lanta.

ABSTRACT

Dark green leafy vegetables (DGLV) are essential in a balanced diet and are vital for a healthy life. It was widely used by the local household of Batticaloa in the past, but it is becoming an under estimated crop due to several reasons.

This study dealt with the relation ship between consumption patterns and the method of minimal processing of dark green leafy vegetables. Ten indigenous varieties of DGLVs were analysed in ten villages in Batticaloa district. This study showed clear difference in consumption pattern. Altenthera triandera and Moringa were widely consumed in all ten villages. Altenthera triandera, Dregea volubilis, Solanum trlobatum and Sesbania grandiflora were available through out the year. The others were available only during rainy season.

There was a clear preferential pattern to some DGLV which was not related to any variables. There was a wide spread awareness of basic nutrition principles associated with preparation associated with various categories of people sampled.

All ten DGLVs that are consumed in the local villages were analysed the proximate nutrition composition, minerals and ascorbic acid content. The crude protein ranged from 3.9—29.8%, crude fat0.16—9.6, crude fiber from 9.4-16.7 and ash content from 6.1-22.8. The Moisture content of the DGLVs range from 75.6 – 87.6, Ascorbic acid range from 10.7-46.2mg/100g (wet basis),Crude protein 4.3-30.1%,crude fat 0.18-8.2%, crude fiber 8.2 –1 3.80%, ash 6.1-22.3%.

Minimal processing and shelf life of Pon and Mur were analysed withsensory evaluation. Pon was found to be suitable for minimal processing with no significant difference in nutritional and sensorial qualities.

TABLE OF CONTENTS

ABSTRACT	1
ACKNOWLEDGEMENTS	2
TABLE OF CONTENTS	6
LIST OF TABLES	7
LIST OF FIGURES	8
CHAPTER 1 INTRODUCTION	9
1.1 Importance of nutrients found in vegetables.	10
1.1.1Malnutrition in poor countries	
1.1.2Food production and nutrition	10
1.1.3Nutrition and good health	10
1.1.4Anti nutrients	10 10
1.1.5The current situation in malnutrition	10
1.2 OBJECTIVES OF THE RESEARCH	11
CHAPTER 2 LITERATURE REVIEW	12
2.1 Human nutrition	12
2.2. Nutrition and RDAs	14
2.2.1 Special nutritional needs in dry land	14
2.2.2 Children's special needs	15
2.2.3 Woman's special needs	16
2.2.4 Nutritional need for work	16
2.3 Nutrition and illness	17
2.4. Protein from plant source	17
2.5 Vitamins from dark green leaves.	18
2.5.1Vitamin A from DGLV	18
2.5.2 Vitamin for the poor in obtaining Vitamin A	18
2.5.3Requirments of Vitamin A	18
2.6 Vitamin B Thiamin B ₁ 2.6.1 Requirements	19
2.7. Vitamin C	19
2.7.1 Vitamin C deficiency	19
2.7.2 Vitamin C from DGLVs	19

2.9. Economics of vegetarianism			20.
2.9.1. Nutritive benefits of vegetarian foods			21
2.9.2. Economics of DGLVs			23
2.9.3. Dark green leafy vegetables and cancer Pro	tection		24
2.10.Nutrition from DGLVs in human			25
2.11.Sensory Evaluation			28
CHAPTER III METHEDOLOGY			33
3.1. Survey			33
3.1.1. Minimal Processing			33
3.2 Nutrient Analysis			34
3.2.1 Sample collection			
3.2.2 Sample preparation	2.6		35
3.2.3 Proximate analysis			35
3.3 Proximate analysis			35
3.3.1 Moisture			36
3.3.2 Crude protein			36
3.3.3 Crude fat			37
3.3.4 Crude fiber		į.	37
3.3.5 Ash	*		38
3.3.6 Mineral determination			39
3.3.7 Vitamin C determination	*		40
CHAPTER IV RESULTS AND DISCUSSION		,	42
4.1 Proximate Analysis		2 S	42
4.2 Fiber	·	=	43
4.3 Provitamin A			44
4.4 Vitamin C			44
4.5 Crude Protein		43	
			84 =
CHAPTER V CONCLUSIONS			45