Influence of plant growth regulators on *in vitro* callogenesis and *ex vitro* rooting of dragon fruit (*Hylocereus undatus* L.)

Arasaratnam Thinesh

1

Faculty of Agriculture

Eastern University

Sri Lanka

2013

ABSTRACT

Dragon fruit (Hylocereus undatus) is a climbing vine which has received worldwide attention first as an ornamental plant and then extended as a fruit crop. Since seed viability of stored dragon fruit is very low, stem cuttings are used as planting material in dragon fruit. The present study was aimed to examine the selected plant growth regulators on vegetative propagation of dragon fruit under in vitro and ex vitro conditions. Therefore, bud and stem segments of dragon fruit was placed in MS medium with two different concentrations at 2 and 3 mg/l of BAP (6-benzyl- aminopurine) or 2 and 3 mg/l of TDZ supplemented with 0.5 mg/l NAA (a- naphthalene acetic acid) for initial culture establishment under in vitro conditions. The results revealed that at 2 and 3 mg/l of BAP or TDZ, TDZ at 3 mg/l was the most responsive concentration for the induction of callus formation in cultured stem explants of dragon fruit. bud explant showed higher in vitro response cultured in MS medium supplemented with 3mg/l TDZ and 0.5mg/l NAA. The result exhibited that the most responsible part for the induction of callus formation was the stem segment cultured in MS medium supplemented with 3mg/l TDZ and 0.5mg/l NAA. In this study TDZ is most effective than BAP.

Further, study was done to determine the effect of various concentrations of auxin on establishment of stem cuttings and also to select optimal concentration of auxin for better root and shoot formation from stem cuttings of dragon fruit. Therefore, the stem cuttings were dipped in different concentrations of IBA and then planted in the polythene bags containing top soil: sand: cow dung at a rate of 1:2:1. This experiment was designed in Completely Randomized Design (CRD) with three

i

replicates. The treatments included 2000, 4000, 6000, 8000 ppm concentrations of IBA and a control. The data revealed significant effect of different concentrations of IBA on the dragon fruit establishment parameters namely, shoot length, number of roots per cutting, root length, fresh and dry weights of shoot and roots. In most cases, cuttings treated with 6000 ppm IBA gave the best results or produced results which are not significantly different from the higher concentrations of IBA (8000 ppm). At 60 days after planting of cuttings, shoot length (10.5 cm), number of roots per cutting (15.3), root length (21.3 cm), fresh weights of shoot (10.25 g) and roots (1.92 g),dry weights of shoot(0.15 g) and roots (0.52 g) were recorded in cuttings dipped in 6000 ppm concentration of IBA. Lower value was recorded in a control in the above mentioned parameters. 6000 ppm IBA concentration is better in rooting of the dragon fruit cuttings.

ii

TABLE OF CONTENTS

Co	ntents	Page
AB	STRACT	i
AC	KNOWLEDGEMENT	iii
СО	NTENT	iv
AB	REVIATIONS	vii
LIS	T OF FIGURES	viii
LIS	T OF PALTES	ix
LIS	T OF TABLES	х
1.0	INTRODUCTION	01
1.1	Need for improvementin plant propagation	03
1.2	Objectives	05
	A A A A A A A A A A A A A A A A A A A	
2.0	REVIEW OF LITERATURE *	06
2.1	Classification	06
2.2	Origin and geographical distribution	06
2.3	Ecology	08
2.4	Morphology	08
2.5	Anatomy	10
2.6	Uses of dragon fruit.	10

iv

2.7	Nutritional value		11		
2.8	Health benefits of dragon fruit				
2.9	Conventional propagation				
2.10) Application of auxin on cuttings				
2.11	Factor affecting the establishment of cuttings.				
2.12	Propagation media.		17		
2.13	Tissue culture technique		18		
3.0	MATERIALS AND METHODS		21		
3.1	Sterilization of culture vessels		21		
3.2	Preparation of stock solution		21		
3.3	Preparation of culture media		21		
3.4	Collection of explants	ŗ,	22		
3.5	Sterilization of explants		22		
3.6	Sterile technique in laminar hood		23		
3.7	Inoculation of explants		23		
3.8	Culture environment		23		
3.9	Experiment 1		24		
3.10	Experiment 2		25		
	3.10.1 Soaking of cuttings	Ĭ.	26		
	3.10.2 Planting of cuttings		26		
	3.10.3 Agronomic parameters		26		

V

		CONTRACTOR AND DEPENDENCE OF THE CASE OF T	CARL NUMBER OF	10-00-00 P.000
0	11	Statistical	ona	TICIC
1		Mailstical	dild	LYDID.

4.0	RESULTS AND DISCUSSION				28		
4.1	Exper	iment 1			28		
.*	4.1.1	In vitro response			28		
	4.1.2	Survival of cultured explants			35		
4.2.	4.2. Experiment 2						
	4.2.1	Number of roots			38		
	4.2.2	Root length			40		
	4.2.3	Shoot length			44		
	4.2.3	Fresh weight of shoots			46		
	4.2.4	Fresh weight of roots			46		
	4.2.5	Dry weight of shoots		í.	48		
	4.2.6	Dry weight of roots		1	49		
		*					
5.0	CONCI	LUSION	,		51		
REI	FERAN		* *		53		
API	PENDE	X 1	1				

27

APPENDIX 11

vi