

EFFECTS OF SALT STRESS ON GROWTH PHYSIOLOGY

AND BIOCHEMICAL PARAMETERS OF SELECTED OKRA

(Abelmoschusesculentus L.) CULTIVARS

BY

JEYAPRABA JESUTHASAN

FAG360

Project Report Library - EUSL

DEPEARTMENT OF AGRICULTURAL BIOLOGY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2014

DEAN Faculty of Agriculture Restern University, Sri Lankes

.

PROCESSED Main Library, EUSL

ABSTRACT

Salinity is a worldwide problem that limits the growth and productivity of all vegetation and it is going to increase day by day. Studies were conducted at the Agronomy farm of the Eastern University of Sri Lanka to investigate the salinity stress responses of selected okra cultivars on growth, physiological and biochemical attributes. The okra cultivars 'MI5', 'Haritha' and 'EUOK 2' were used for this study during the vegetative, early flowering and fruiting stages. The experiment was laidout in the Completely Randomized Design with 2×3 factorial arrangement and consisted of six treatments and five replications. The plants were subjected to salt stress after 30 days of germination with 100mM NaCl concentration. Irrigation along with half strength Hoagland's nutrient solution was applied to the treatments. The solution was used without salt for the control treatment. Watering was done according to the need of the plants by regularly observing the wetness level of the sand.

Salt stress had significant effect on the growth physiological attributes of the tested cultivars of okra. 'EUOK 2' (10.3 and 10.7%) and 'Haritha' (11.2 and 7.9%) exhibited lower reduction in plant height under salinity during the vegetative and early flowering stages respectively. During the fruiting stage 'EUOK 2' showed 27.7% increase in plant height. The highest reduction was recorded in the 'MI 5' (18, 17.5 and 17%) during the vegetative, early flowering and fruiting stages. 'EUOK 2' showed the lowest reduction (19.7 and 6.1%) in the number of leaves during the early flowering and fruiting stages while the highest reduction was obtained in 'MI 5' (31.7 and 28.6%). The leaf area of the cv 'EUOK 2'showed an increase of 55.2% while the 'MI 5' exhibited a reduction by about 52.5% during the vegetative stage.

I

The lowest reduction was found in the 'EUOK 2' (5.5%) under salinity while the highest reduction was observed in the 'MI5' (41.5%) during the early flowering stage. Reduction in the leaf area and the number of leaves due to salt stress showed a lower impact on 'EUOK 2' and the highest reduction in 'MI 5' during the above growth stages was seen in the other two cultivars. The highest reduction in the shoot dry weight was obtained in the 'MI 5' (30.4%) while the lowest one was observed in the 'EUOK 2' 21.3%. The highest increase was noted in the 'Haritha'(10.3%) while the 'EUOK 2' showed a reduction of 29.4% during the early flowering stage. During the fruiting stage, 18.8, 20.8 and 34.6% reduction was observed in the 'Haritha', 'MI 5' and 'EUOK 2' cvs. respectively. Salinity had significant effect on the shoot dry weights of the tested cultivars of okra during the fruiting stage. 'EUOK 2' exhibited a lower reduction in root dry weight (30.3%) while 'Haritha' showed 39% reduction under saline condition.

Salt stress had significant effect on the Relative Water Content, fibre contents and ascorbic acid content of the tested cultivars. The highest RWC was exhibited in the 'EUOK 2' (73.5%) while the lowest one was observed in the 'MI,5' (58.7%). The highest total soluble solids were obtained in the 'EUOK 2' cultivars the lowest values were got in 'MI 5'. The highest fibre content in Haritha (0.9%) and ascorbic acid content in 'MI 5' (10 mg 100g⁻¹) were exhibited while the lowest one were observed in the 'EUOK 2' (0.5% and 3.3 mg 100g⁻¹) respectively .The fresh pod yield was affected significantly with salinity. The highest fresh pod yield (7.4 t ha⁻¹) was obtained in the 'EUOK 2', while the lowest (4.3 t ha⁻¹) was achieved in the 'MI 5'. The highest average weight of pods and girth of the pods were obtained in the 'EUOK 2' while the lowest were found in the 'MI 5'.

TABLE OF CONTENTS

Page No

ABSTRACT	I
ACKNOWLEDGEMENT	IV
TABLE OF CONTENTS	V
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF PLATES	XI
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	6
2.1 Salinity	6
2.1.1 Extent and distribution of saline soil	6
2.1.2 Effects of salinity on nutrients	7
2.1.3 Effects of salinity on germination	······ 10
2.1.4 Effects of salinity on plant growth	11
2.1.4.1 Leaf	12
2.1.4.2 Shoot	
2.1.4.2 Root	
2.1.5 Effects of salinity on biomass	14
2.1.6 Effects of salinity yield	15
2.1.7 Effects of salinity on Water Relations	16
2.1.8 Physiological basis of salt tolerant in plants	17

2.3 Taxonomy of okra	20
2.3.1 Classification adopted by IBPGR	21
2.4 Description of okra	22
2.4.1 Growth and development of okra	24
2.5 Botanical features of okra	25
2.5.1 Root	25
2.5.2 Stem	25
2.5.3 Leaves	26
2.5.4 Flowers	26
2.5.5 Fruits	27
2.5.6 Seeds	27
2.6 Features of the tested cultivars	27
2.6.1 Characteristic features of 'MI 5' cultivar	27
2.6.2 Characteristic features of 'Haritha' cultivar	27
,2.6.3 Characteristic features of 'EUOK 2' cultivar	28
2.7 Okra cultivation in the world	28
2.8 Okra cultivation in Sri Lanka	28
CHAPTER 3 MATERIALS AND METHODS	30
3.1 Experimental site	30
3.2 Seed collection	30
3.3 Bag filling	30
3.4 Seed treatment and planting	31
3.5 The treatment structure	31

3.5 Experimental design	31
3.7 Watering and Treatment application	32
3.8 Growth attributes	33
3.8.1 Plant height	33
3.8.2 Number of leaves	33
3.8.3 Leaf area	33
3.8.4 Shoot and Root dry weight	34
3.9 Biochemical investigation	34
3.9.1Vitamin C (Ascorbic acid) content	34
3.9.1.1 Procedure	34
3.9.1.2 Calculation	35
3.9.2 Curde Fibre content	36
3.9.2.1 Procedure	36
3.9.2.2 Calculation	36
3.10 Physiological attributes	37
, 3.10.1 Total Soluble Solid (TSS)	37
3.10.1.1 Procedure	37
3.10.2 Relative Water Content (RWC)	37
3:10.2.1 Procedure	37
3.11 Yield attributes	39
3.11.1 Pod weight	39
3.11.2 Pod length	39
3.11.3 Pod girth	39
3.11.4 Marketable yield	39
3.12 Analysis	40

4.1 Effects of salt stress on the heights of okra plants
4.2 Effects of salt stress on the number of leaves of okra plants
4.3 Effects of salt stress on the leaf area of okra plants
4.4 Effects of salt stress on the shoot dry weights of okra plants
4.5 Effects of salt stress on the root dry weights of okra plants
4.6 Effects of salt stress on the Relative Water Content of okra leaves 55
4.7 Effects of salt stress on the Total Soluble Solids of okra pods57
4.8 Effects of salt stress on the fibre contents of okra pods
4.9 Effects of salt stress on the Ascorbic Acid contents of okra pods60
4.10 Effects of salt stress on the yield attributes of okra plants

CHAPTER 5 CONCLUSIONS		
SUGGESTIONS FOR FUTURE STUDIES	. 68	
REFERENCES	. 69	

p.

34

1

dimensioners, and

APPENDICES