

EFFECTS OF ARTIFICIAL DEFOLIATION DURING THE REPRODUCTIVE STAGE ON SUBSEQUENT GROWTH

AND YIELD OF OKRA

(Abelmoschus esculentus L.)

BY

PATRICK ANTONY DIAS

DEPARTMENT OF AGRICULTURAL BIOLOGY FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

2014

DEAN Faculty of Agriculture Eastern University, Sri Lankaa

1

PROCESSED Main Library, EUSL

ABSTRACT

An experiment was conducted at the Agronomy farm of the Eastern University in the Yala 2014 to investigate the effects of artificial defoliation during the reproductive stage on subsequent growth and yield of okra cultivar P_{23} . The treatments consisted of five defoliation practises. T₁ where no leaves were removed served as the control. The first leaf was defoliated in the T2 treatment. The first and third leaves were plucked in the T₃ treatment. The first, third and fifth leaves were clipped in T₄ Treatment whereas the first, third, fifth and seventh leaves were plucked in the T5 treatment. The experiment was laid out in a Randomized Complete Block Design with the afore said treatments with four replications. Destructive sampling was done during the podding, mid podding and late podding stages. The results revealed that there were significant $(P \le 0.05)$ differences between treatments in the plant heights, leaf area index (LAI), leaf dry weights, pod dry weights, stem and root dry weights, Net Assimilation Rate (NAR), Relative Growth Rate (RGR), pod length, pod girth and Harvest index (HI). Among the treatments the highest attributes were found in the T3 treatment on plant heights, leaf area index (LAI), leaf dry weights, pod dry weights, stem dry weights, Net Assimilation Rate (NAR), Relative Growth Rate (RGR), pod length, pod girth and Harvest index (HI) except the root dry weight. The control treatment (T_1) where no leaves were removed showed the highest root dry weight than the other treatments and the lowest values were found in the T5 treated plants during the podding and mid podding stages. The highest yield of 13.5 t.ha⁻¹ was recorded in the T₃ treatment whereas the lowest one (7.9 t.ha⁻¹) was found in the T_5 treatment. From these results it was found that defoliating the first and third leaves has caused remarkable positive changes in the growth physiological attributes and yield of okra except that was found

i

TABLE OF CONTENTS

	Page No
ABSTRACT	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	х
CHAPTET 1 INTRODUCTION	01
1.1 Objectives of this study	05
CHAPTER 2 REVIEW OF LITERATURE	06
2.1 A brief description of okra	06
2.1.1 Origin and distribution	07
2.1.2 Taxonomy	08
2.1.3 Botanical description of okra plant 2.1.3.1 Leaves	09 09
2.1.3.2 Stem	09
2.1.3.3 Root	09
2.1.3.4 Flowers	10
2.1.3.5 Fruits	10
2.1.3.6 Seeds	10
2.1.3.7 Reproductive biology	11
2.1.4 Characteristics of widely used cultivars of okra in Sri La 2.1.4.1 MI-5	anka 11 11
2.1.4.2 MI -7	11
2.1.4.3 Haritha	12
2.1.5 Importance and uses of okra	12

	2.1.6 Nutritional composition	14
	2.1.7 Environmental factor	15
	2.1.7.1 Climate	15
	2.1.7.2 Soil	16
	2.1.8 Land preparation	16
	2.1.8.1 Wet zone	16
	2.1.8.2 Dry zone	16
	2.1.9 Time of planting	16
a.	2.1.10 Planting and spacing	17
	2.2 Present status of okra in Sri Lanka	17
	2.2.1 Area of cultivation	17
	2.2.2 Production constrain in okra cultivation in Sri Lanka	18
	2.3 Photosynthesis of okra plant	19
	2.4 Sink- source relationship in dry matter	20
	2.5 Impact of old leaves in photosynthesis	21
	2.6 Effects of leaf excision on yield	21
CHA	PTER 3 MATERIALS AND METHODS	23
	3.1 Location	23
	3.2 Procurement of seeds	23
	3.3 Okra cultivar	24
	3.4 Seed treatment	24
	3.5 Germination test	24
	3.6 Agronomic practices	25
	3.6.1 Land preparation	25
	3.6.2 Planting	25
	3.6.3 Irrigation	26

v

3.6.4 Thinning out and gap filling		26
3.6.5 Weeding		26
3.6.6 Fertilizer application		26
3.6.7 Pest and Disease management		27
3.7 Experimental design		27
3.8 Treatments		29
3.9 Harvest		31
3.10 Growth physiological attributes		31
3.10.1 Plant height		31
3.10.2 Leaf area index (LAI)		31
3.10.3 Leaf dry weight		32
3.10.4 Pod dry weight		32
3.10.5 Stem dry weight		32
3.10.6 Root dry weight		32
3.10.7 Net Assimilation Rate		33
3.10.8 Relative crop growth rate (RGR)		33
3:11 Yield	Ś	33
3.11.1 Fruit Length		34
3.11.2 Fruit girth		34
3.11.3 Harvest index		34
3.12 Data analysis		34
CHAPTER 4 RESULTS AND DISCUSSION		35
4.1. General appearance of the experimental plants		35
4.2 Germination percentage		36
4.3 Growth physiological attributes		36
4.3.1 Plant height	ti.	36
4.3.2 Leaf area index (LAI)		38

vi

4.3.3 Dry weig	ht of leaves		40	
4.3.4 Pod dry v	veight		42	
4.3.5 Stem dry	weight		44	
4.3.6 Root dry	weight		46	
4.3.7 Net Assir	milation Rate (NAR)		47	
4.3.8 Relative	Growth Rate (RGR)		50	
4.3.9 Yield			52	
4.3.10 Podding	g features of okra plant		54	
4.3.10.	1 Fruit dry weight for 10 harve	ests	54	
4.3.10.2	2 Fruit girth		56	
4.3.10.3	3 Fruit length		58	
4.3.11 Harvest	Index (HI)		60	
4.4 Partitioning of assimilates during the mid podding stage				
4.5 Correlation coeffic	cients between growth physiol	ogical attributes	64	
CHAPTER 5 CONCLUSIO	NS		66	
SUGGESTIONS FOR FUT	URE STUDIES		67	
REFERÉNCES	3.4	Ż	68	
APPENDIX	,		75	

5
