EFFECT OF FOLIAR APPLICATION OF BORON AND ZINC ON GROWTH, YIELD AND QUALITY OF TOMATO (Lycopersicon esculentum) IN BATTICALOA DISTRICT

BY

MATHUUMA VELUPPILLAI

FACULTUY OF AGRICULTURE

2

EASTERN UNIVERSITY

SRI LANKA

2014

DEAN Faculty of Acriculture Eastern University, Srt Lanke,

PROCESSED

ABSTRACT

An experiment was carried out at the Crop Farm of Eastern University, Sri Lanka during the period December 2013 to April 2014 to study the effects of foliar application of boron, zinc and their combinations on vegetative growth, yield and quality of fruits of tomato plants grown in the sandy regosols of Batticaloa district, with the variety of Thilina. This experiment was laid out in a completely randomized design (CRD) with eight replicates with following combinations; T1-B (150 ppm), T2-B (250 ppm), T3-B (350 ppm), T4-Zn (150 ppm), T5-Zn (250 ppm), T6-Zn (350 ppm), T7-B (150 ppm)+Zn (150 ppm), T8-B (250 ppm)+Zn (250 ppm), T9-B (350 ppm)+Zn (350 ppm) and T10- Control.

The results showed that foliar application of Zn alone at 250 ppm resulted in the maximum plant height, number of flower of flower clusters/ plant, number of flowers/ plant, number of fruits/ plant, fresh and dry weight of fruits/ plant. Foliar application of B at 250 ppm increased pulp weight, seed weight, dry weight of leaves/ plant and dry weight of stem/ plant, and dry weight of roots/plant were high in both B at 250 ppm and Zn at 150 ppm. Combined application of B (350 ppm) and Zn (350 ppm) increased the acidity and ascorbic acid content whereas B at 150 ppm increased total soluble solid content and B at 350 ppm increased pH of the fruits. In all parameters, the lowest performance was recorded in the control treatment.

The results suggest that under the conditions in the experiment, yield could be increased by 21 % by the application of Zn at the rate of 250 ppm at flowering stage. Therefore, foliar application of B and Zn is one of the ways to increase yield during off-season.

iv

TABLE OF CONTENTS

AJ	BSTRACT	iv	
A	CKNOWLEDGEMENTS	v	
T.	TABLE OF CONTENT		
L	ISTS OF TABLES	х	
1	INTRODUCTION	1	
2	REVIEW OF LITERATURE	6	
	2.1 Growth patterns	6	
	2.2 Climatic requirements	7	
	2.3 Nutritive value	8	
	2.4 Plant nutrients	8	
	2.5 Effect of nutrients	12	
	2.5.1 Effect of macro nutrients	13	
	2.5.1.1 Nitrogen	13	
	2.5.1.2 Phosphorus	13	
	2.5.1.3 Potassium	13	
	2.5.1.4 Magnesium	14	
	2.5.2 Effect of micro nutrients	14	
	2.5.2.1 Boron	15	
	2.5.2.1.1 Vegetative growth	15	
	2.5.2.1.2 Yield	16	
	2.5.2.1.3 Quality of fruits	16	
	2.5.2.2 Zinc	17	
	2.5.2.2.1 Vegetative growth	17	
	2.5.2.2.2 Yield	18	
	2.5.2.2.3 Quality of fruits	19	

	2.5.2.3 Combined application of B and Zn	19
	2.5.2.4 Copper	20
	2.5.2.5 Iron	21
	2.5.2.6 Manganese	21
	2.5.2.7 Molybdenum	22
	2.5.2.8 Chlorine	22
3	MATERIALS AND METHODS	24
	3.1 Location and soil	24
	3.2 Climate	24
	3.3 Species and variety	24
	3.4 Experiment	25
	3.5 Statistical design	25
	3.6 Agronomic practices	26
	3.6.1 Seed treatment	26
	3.6.2 Nursery Management practices	26
	3.6.3 Transplanting	26
	3.7 Cultural practices	27
	3.7.1 Fertilizer application	27
	3.7.2 Watering	27
	3.7.3 Weed Control	27
	3.7.4 Staking	27
	3.8 Growth Assessments	27
	3.8.1 Height of the main stem	28
	3.8.2 Number of leaves, branches, flower clusters, flowers and fruits	28
	3.8.3 Weight of plants	28
	3.8.4 Fruit yield	28

	3.8.5 Weight of seeds and pulp per fruit	28
	3.8.6 Acidity and ascorbic acid	28
	3.8.7 Total soluble solid	29
	3.8.8 pH	29
ŀ	RESULTS AND DISCUSSION	30
	4.1 Effect of foliar application of Boron and Zinc on growth, yield	30
	and quality of Tomato	
	4.1.1 Vegetative growth	30
	4.1.1.1 Plant height	30
	4.1.1.2 Number of leaves/ plants	31
	4.1.1.3 Number of branches/ plants	33
	4.1.1.4 Length of roots/ plant	33
	4.1.1.5 Dry weight of leaves/ plant	35
	4.1.1.6 Dry weight of stem/ plant	35
	4.1.1.7 Dry weight of roots/ plant	36
	4.1.1.8 Total dry weight of plant (leaves, stems, roots and fruits)	36
	4.1.2 Yield and yield components	39
	4.1.2.1 Number of flower clusters/ plant	39
	4.1.2.2 Number of flowers/ plant	41
	4.1.2.3 Number of fruits/ plant	41
	4.1.2.4 Fresh weight of fruits/ plant	42
	4.1.2.5 Dry weight of fruits/ plant	43
	4.1.2.6 Pulp weight/ fruit	47
	4.1.2.7 Seeds weight/ fruit	47
	4.1.3 Quality component	49
	4.1.3.1 Acidity of fruits	49