

EFFECT OF COMBINE USE OF ORGANIC MANURES AND INORGANIC FERTILIZER ON NITROGEN FIXATION AND PERFORMANCE OF COWPEA GROWN IN SANDY REGOSOL

HAMILDA HEMANANTHY THEVANAYAGAM

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2014

DEAN Faculty of Agriculture Eastern University, Sr(Lankage

1

PROCESSED Main Library, EUSL

ABSTRACT

Biological nitrogen fixation is considered as an important characteristic of cowpea for economic production. Yet the process of nitrogen fixation alone does not adequate for the plant to achieve a maximum productivity. Nitrogen fixation and nodulation of cowpea is influenced by sevegenral factors such as soil fertility, agro-ecological zones, organic manures, inoculation and cowpea varieties etc. This study was conducted to investigate the combine use of organic manure and inorganic fertilizer on Nitrogen fixation and performance of vegetable cowpea grown in sandy regosol. This experiment was laid out in a Complete Randomized Design (CRD) with seven treatments and three replicates. Gliricidia, ipil ipil, paddy straw, poultry manure, cattle manure and goat manure were evaluated with recommended level of inorganic g fertilizers on nitrogen fixation and performance of cowpea grown in sandy regosol. Among the different types of organic manure combinations with inorganic fertilizer, highest crop yield was obtained with the treatment combination of poultry manure and recommended level of inorganic fertilizer. Highest nodulation was obtained in sole application of inorganic fertilizer and lowest nodulation but high nitrogen in soil was in poultry manure combination. This indicates that legumes will obtain less of their Nitrogen requirement from the atmosphere if there is an adequate supply of nitrogen available from the soil. In addition, the results revealed that among plant materials straw was inferior to ipil ipil and gliricidia as a source of organic manure for vegetable cowpea production. Therefore, the combined use of poultry manure with inorganic fertilizer can be recognized as the most suitable way for ensuring the high crop yield and the second best source is ipil ipil manure and chemical fertilizer combination.

TABLE OF CONTENTS

	Page No
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
ABBREVIATION	xii
CHAPTER ONE	
1.0 INTRODUCTION	1
1.1 Objectives	4
CHAPTER TWO	
2.0 LITERATURE REVIEW	5
2.1 Properties of sandy regosol	6
2.2. Problems in sandy regosols	6
2.2.1. Nutrient deficiency	6
2.2.2. Moisture Retension	6
2.3. Inorganic fertilizer in sandy regosol	7
2.3.1. Drawbacks in inorganic fertilizers	7
2.4. Organic fertilizers on sandy regosol	8
2.5. Advantages of application of organic fertilizers on soil	8
2.5.1. C: N ratio	8
2.5.2. Cation exchange capacity of soil	9
2.5.3. Microbial activity	9
2.5.4. Soil Aggregate Stability	9

2.5.5. Bulk density	10
2.5.6. Hydraulic conductivity	10
2.6. Organic fertilizers	10
2.6.1. Ipil ipil	10
2.6.2.Glyceridiya	11
2.6.3. Rice Straw	12
2.6.4. Poultry manure	13
2.6.5. Cattle manure	14
2.6.6. Goat manure	14
2.7. Importance of integrated plant nutrient system	15
2.8. Cowpea	16
2.9. Environmental and growth requirement	17
2.9.1. Soil and climate	17
2.9.2. Challenges for cowpea grain yield improvement	17
2.10. Rhizobia	17
2.10.1. Nodule formation	18
2.10.2. Kinds and distribution of nodules	18
2.11. Importance of host-Rhizobia interactions to agriculture	19
2.12. Factors affecting on biological nitrogen fixation,	20
2.12.1. Şalinity	20
2.12.2. Nutrient level	21
2.12.3. Water logging	22
2.12.4. Nutrient supply	22
2.12.5. Soil pH	22
2.12.6. Soil water	23

2.12.7. Available Phosphorous	24
2.12.8. Application of organic manure	25
2.12.9. Temperature	25
2.12.10. Inoculation	26
CHAPTER THREE	
3.0MATERIAL METHODS	
3.1. Description of Experimental site	27
3.2. Description of organic manures	27
3.3 Description of soil	28
3.3.1. Properties of sandy regosol	28
3.4. Description of variety	29
3.5. Experiment	29
3.5.1. Experiment procedure	29
3.5.2. Treatment	30
3.5.3. Experimental design	30
, 3.6. Sowing	31
3.7. Agronomic practices	31
3.7.1. Thinning	31
, 3.7.2. Top dressing	31
3.7.3. Watering	31
3.7.4. Weeding	31
3.8. Measurement	32
3.8.1. Soil analysis	32
3.8.2. Plant analysis	32
3.8.2.1. Biometric parameters	32

3.9. Analysis of results	33
CHAPTER FOUR	
4.0. RESULTS AND DISCUSSION	34
4.1. Evolved CO ₂ -C (mg/10g of soil)	34
4.2. Soil porosity	37
4.3. Soil bulk density	39
4.4. Soil organic carbon	41
4.5. Available nitrogen	43
4.6. Yield	46
4.7. Plant height	48
4.8. Nodulation	51
4.9. Effective nodules	53
4.10. Root Weight	55
4.11. Root length	57
CHAPTER FIVE	
5.0 CONCLUSION	59
REFERENCE	60
8.	

PLATES

ÿ.

•