EFFECT OF DIETARY OMEGA-3 FATTY ACID ON THE PERFORMANCE OF LAYING HEN AND THE FATTY ACID COMPOSITION OF EGG YOLK

BY

MOHAMED THAMBY SHAFIYULLAH

5

PROCESSED

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2014

ABSTRACT

The aim of the research was to identify omega – 3 egg production and determine effects of different combinations of soya oil and fish oil on the performance of laying hens and on the profile of fatty acids in egg yolks, especially on n-3 poly unsaturated fatty acid (PUFA) when such oils are added to the diet of laying hens. The research was carried out on 60 laying hens of the Hy – line hybrid (white) ranging in age from 26 to 30 weeks old. Hens were divided into five groups (6 laying hens per group) and fed with a formulated mixture (that contained 17.17% of crude protein and 2860 K cal/Kg ME. The research lasted for 30 days.

The control Group (T5) was given diets without oil supplemented. But 6% added Maize and experimental groups T1, T2, T3 and T4 were fed diets that contained a combination of fish and soya oils in different amounts. Diets given to the T1 group contained 6% of fish oil, while the T2 group was fed diets with 4% of fish oil and 2.0% Soya oil, while the T3 Group was fed diets with 2% of fish oil and 4.0% Soya oil, while the T4 Group was fed diets with 6% of soya oil.

Production characteristics of hens were monitored during the whole experiment. Portion of saturated (SFA) and Unsaturated Fatty acids (MUFA and PUFA) as well as alpha-linolenic (alpha- LNA C: 18: 3n-3) eicosapantaenoic (EPA, C20:5n-3) and docosahexaenoic (DHA C22:6n-3) acid were shown as a percentage of total fatty acids contained in yolk. There were not statistically significant differences (P<0.05) in the hens feed consumption, percentage of HDP, egg weight, egg yolk weight, Albumin weight and shell weight. Egg Quality parameter egg shape index and yolk colour also not shown statistically significant.

i

The portion of SFA in total fatty acids contained in yolk shown higher percentage T5(control)groups,(36.54%)andfollowingT1groups(33.41%)T2,T3,T4groups

(31.18%,31.46%,31.65%) respectively .Higher content of MUFA was noticed in T1, T2, T3, T4 groups, if compared to the control (35.25%) (T1-42.85%, T2-42.37%, T3-40.77%, and T4-36.95%). Higher content of linolic acid was notified T4 groups(26.35%) but lowest group T1(16.62%),content of linolinic acid was sown higher percentage of T3 group, lowest control group (0.65%),content of DHA highest T1 group (4.54%) and lowest control group(0.21%). Total omega-3 PUFA was increased in the T1 group for 5.51%, T2 group for 5.48%, T3 group for 3.69%, T4 group for 2.6% and the control group 0.86%. The ratio of n-6/n-3 PUFA was the lowest in egg yolk of the T1 group (3.34) followed by that of the T2 group (4.01), T3 group (6.56), T4 group (11.05) and finally that of the control group (24.37)

ii

Street, or

1

TABLE OF CONTENTS

Contents	Page No
ABSTRACT	I
ACKNOWLEDGEMENT	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VIII
LIST OF FIGURES	IX
ABBREVIATIONS	X
CHAPTER 1 – INTRODUCTION	1
CHAPTER 2- LITERATURE REVIEW	4
2.1 Over view of the poultry industry	4
2.1.1 Broiler sector	4
2.1.2 Export	6
2.1.3 Layer sector-	6
2.1.4 Poultry Feed sector	7
2.2 Designer egg product	8
2.2.1 The egg as a functional food	9

2.2.2 Relationship between egg consumption and heart lisease	10
2.2.3 Strategies to consider in egg nutrient enrichment	12
2.3 Omega 3 polyunsaturated fatty acids	13
2.3.1 Role in human health	13
2.3.2 Requirements for essential fatty acid	15
2.3.3 Metabolism of polyunsaturated acid	17
2.3.4 Diseases associated with inadequate w-3consumption	18
2.3.5 General consensus of the benefits of w-3 PUCA	19
2.3.6 Daily recommended value for omega-3 fatty acid	21
2.3.7 Sources of Omega 3	21
2.3.8 Omega 3 PUFA in poultry production	22
2.3.8.1 Modification of fatty acids profile in egg	22
CHAPTER 03-MATERIALS AND METHODS	26
3.1 Location	26
3.2 Birds and management	26
3.3 Sampling	28
3.4 Percentage of egg production / hen day Production	28
3 5 Feed consumption	28

3.6 Egg quality analysis	28
3.6.1 Egg weight	28
3.6.2 Egg shape index	29
3.7 Absolute and relative weight of egg components	29
3.7.1 Shell weight and shell weight percentage	29
3.7.2 Yolk weight	29
3.7.3 Albumin weight	29
3.7.4 Yolk color	30
3.8 Biochemical analysis	30
3.9 Statistical analysis	31
CHAPTER 04- RESULTS AND DISCUSSION	32
4.1 Feed consumption	32
4.2 Percentage of hen day production (% of HDP)	33
4.3 Egg weight	35
4.4 Albumin weight	36
4.5 Yolk weight	37
4.6 Shell weight	37
4.7 Yolk color index	38

vii