EFFECT OF SULPHATE OF POTASH AND PARTIALLY BURNT PADDY HUSK ON THE GROWTH PERFORMANCE

OF RICE (Oryza Sativa L.) IN SALINE SOIL

BY

KANIMOLY MANOHARARASAH

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA.

2015

PROCESSED Main Library, EUSL

ABSTRACT

The salinity has been confirmed as main constrain of crop production and major threat to the agriculture. Productivity of most of the paddy growing lands in Sri Lanka declines every year due to increased soil salinity. In Batticaloa District Vaharai is located in Koralai pattu North D.S. division. These lands are often influenced by the salinity and this is one of the important constrain on cultivation.

A pot culture experiment was conducted at Eastern University, Sri Lanka during May to August 2015 to investigate the effect of various potassium rates; 0, 18, 36 and 72 kg K₂O/ha in the form of sulphate of potash and partially burnt paddy husk (with and without), on soil pH, electrical conductivity and available phosphorus, plant potassium and phosphorus content, growth and yield components of rice. A bulk soil sample was collected at 0-20 cm depth from salt-affected area at Vaharai. It was processed and sieved through 2mm sieve. The experiment was laid out in a Completely Randomized Design (CRD) in a factorial manner with three replications.

Results revealed that the application of sulphate of potash in amended soil decreased soil pH and electrical conductivity (EC) from 8.3 to 7.4 and 19.1 dSm⁻¹ to \leq 4 dSm⁻¹ respectively. Amendment increased the soil available phosphorus from 9.69 to 74.673 mg/kg. Furthermore the use of potassium fertilizer remarkably elevated the uptake of essential nutrients of potassium up to 51.91 mg/g (DW), and phosphorus content up to 4.54 mg/g (DW) in saline soils. The application of 72 kg K₂O/ha in the form of sulphate of potash proved to be the best to increase the growth and yield components in saline environment.

i

TABLE OF CONTENT

ABSTRACT i				
ACKNOWLEDGEMENTS				
TABLE OF CONTENT iv				
LIST OF TABLE				
LIST OF FIGURES ix				
CHAPTER ONE1				
1.0 INTRODUCTION				
1.1 Objectives of this study6				
CHAPTER TWO				
2.0 REVIEW OF LITERATURE				
2.1 Saline soil7				
2.1.1 Origin and form of saline soil9				
2.1.2 Effect of salinity on soil properties10				
2.1.3 Effect of salinity on plant growth and development				
2.1.4 Effect of salinity on rice plant and cultivation				
2.2 Role of potassium in plant nutrition				
2.2.1 Factors affecting potassium uptake of crops				
2.2.2 Inorganic sources of potassium for crops				
2.2.3 Role of potassium in rice plant nutrition in saline soil				
2.3 Organic amendments				
2.3.1 Partially burnt paddy husk used for reclamation27				
2.4 Integrated management approaches				

CHAPTER THREE			
3.0	M	ATERIALS AND METHODS	30
	3.1 De	scription of experimental site	30
	3.2 Co	llection, preparation and analysis of organic amendment and soil	
	san	nples	30
	3.3 Des	scription of soil	31
	3.4 Des	scription of organic amendment	32
	3.5 Pre	paration of treatments and Experimental Design	32
	3.5.1	Preparation of experimental soil with amendment	32
	3.5.2	Treatments	32
	3.5.3	Experimental Design	33
4	3.5.5	Sowing of seed	34
	3.5.6	Agronomic practices	34
	3.6 Me	asurements	34
	3.6.1	Organic Amendment Analysis	34
	3.6.2	Soil Sampling and Analysis	35
	3.6.3	Plant sampling and Analysis	35
		metric parameters	
	3.8 Ana	lysis of results	37
CHAPTER FOUR			
4.0	RE	SULTS AND DISCUSSION	38
	4.1 Soil	Reaction (pH)	38
	4.2 Soil	Electrical conductivity	40
ŝ	4.3 Soil	Available Phosphorus	43
9	4.4 Pota	assium content in plant	49

4.5 Phosphorus content in plant			
4.6 Effect of sulphate of potash and partially burnt paddy husk on rice growth			
parameter and in saline soil			
4.6.1 Plant Height55			
4.6.2 Tillers per plant			
4.7 Yield and Yield attributes of Paddy62			
4.7.1 1000-grain weight62			
4.7.2 Grain yield65			
4.7.3 Straw yield			
CHAPTER FIVE			
5.0 SALIENT FINDINGS AND CONCLUTIONS			
5.1 Salient Findings			
5.2 Conclusions			
REFERENCES			
APPENDIX 01i			
APPENDIX 02iv			

ħ