SPATIAL VARIATION OF SOME CATION CONCENTRATIONS, TEXTURE AND ORGANIC MATTER CONTENT OF THE BOTTOM SEDIMENTS

IN BATTICALOA LAGOON

BY

AMARASINGAM NARMILAN

FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

3

2015

10 MAR 2016

UNIVERSI

ABSTRACT

The Batticaloa Lagoon is a chocked lagoon of primary concern for its biodiversity, its habitats and its resource supply, which have been severely impacted by human activities. Lagoon sediment has an important role in the nutrient cycle of aquatic environments. In some cases, sediment is responsible for the transport of essential nutrients as well as pollutants. Most surface sediments in water originate from surface erosion and contain mineral, bedrock erosion and organic components during the process of soil formation. Continuous discharge of industrial and residential waste water into the Batticaloa lagoon is a potential source of environmental pollution.

Therefore this study was aimed to investigate the preliminary study on spatial variation in some sediment quality parameters in Batticaloa lagoon. Sediment samples from the Batticaloa lagoon were collected from January 2015 to February 2015 to assess the characteristics of physical and chemical parameters in the lagoon bottom sediments. Samples of sediment were collected from the Batticaloa lagoon at twenty six (26) different locations to represent the Batticaloa lagoon.

All the samples were analyzed at the Eastern University, Sri Lanka. Cations such as Sodium (Na) and Potassium (K) concentrations were analyzed using the Flame photometer. Calcium and Magnesium concentrations were analyzed by Versenate Titrimetric method. Further, pH, EC, texture and Organic matter content were measured using standard methods.

Analysis on sediment samples revealed that the lagoon sediment is slightly acidic (pH 6.17) during the wet season. Mean EC value of Batticaloa lagoon sediment is 12.995 (dS/m). The texture analysis of sediments shows that sand was found to be the major

i

contributor to the sediment texture of the lagoon bed. The average percentage of sand, silt and clay in the sediment is 87%, 7% and 6% respectively in the Batticaloa lagoon. Average amount of organic matter in the Batticaloa lagoon sediment is 2.56%. This increased value indicates the accumulation of organic pollutants in the forms of agricultural waste, aquatic plant debris and animal excreta etc.

As far as the cation concentration is concerned, average Na and K concentration of the sediment is 164.17ppm and 14.02ppm respectively. Likewise, mean concentration of both Ca and Mg concentration is 95.09 meq/l in the Batticaloa lagoon sediment. Among the analyzed parameters the sediments are highly contaminated with the Na concentrations followed by Ca and Mg ions.

As it is a preliminary investigation it is recommended and proposed to analyze the heavy metals and trace elements of this Batticaloa lagoon sediments to make it as a comprehensive analysis.

However, the present study results of sediments will be a baseline information and useful tool for future researchers for actual assessment of environmental pollution of this lagoon in terms of cation concentrations, organic^{*} matter and total carbon concentrations.

Keywords: Batticaloa lagoon, Electrical conductivity, Pollution, sediment, total organic carbon,

No.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
ABBREVIATIONS	x
CHAPTER 1: INTRODUCTION	1
1.1 Lagoon systems	1
1.2 Importance of lagoon	2
1.3 Lagoons in Sri Lanka	3
1.4 Threats in lagoon	4
1.5 Lagoon bottom sediments	6
1.6 Objectives of the study	7
CHAPETR 2: LITERATURE REVIEW	8
2.1 Lagoon system	8
2.2 Importance of lagoon	8
2.3 Batticaloa lagoon	9
2.4 Lagoon sediments	10
2.4.1 General	10
2.4.2 Lagoon sediment collection	13
2.4.3 Lagoon sediment analysis	15
2.4.4 Characteristics of lagoon bottom sediment	16
2.4.4.1 Organic matter	16
2.4.4.2 Texture	17
2.4.4.3 Trace elements	18
2.4.4.4 Major cations	20
2.4.4.5 Heavy metals	22
2.4.4.5.1 Cd	25
2.4.4.5.2 Cr	25
2.4.4.5.3 Zn	26
2.4.4.5.4 Pb	26

2.4.4.5.5 Cu	27
2.4.4.5.6 Ni	27
CHAPTER 3: MATERIALS AND METHODS	28
3.1 Description of study area	28
3.2 Site selection and sampling	28
3.3 Preparation of sample for analysis	30
3.4 Lagoon bottom sediment analysis	30
3.4.1 pH	30
3.4.2 Electrical conductivity	31
3.4.3 Total oragnic carbon and Organic matter	31
3.4.4 Texture Analysis	32
3.4.4.1 Removal of organic matter	32
3.4.4.2 Removal of dissolved mineral water	33
3.4.4.3 Dispersion of sample	33
3.4.4.4 Removal of sand in the sample	33
3.4.4.5 Determination of silt and clay by pipetting	34
3.4.4.6 Calculation of Sand, Silt and clay	34
3.4.5 Determination of Sodium by Flame photometer method	35
3.4.6 Determination of Potassium by Flame photometer method	35
3.4.7 Determination of Calcium & Magnesium by Titrimetric Method	36
CHAPTER 4: RESULTS AND DISCUSSION	37
4.1 pH analysis	37
4.2: Electrical Conductivity analysis	39
4.3 Sodium (Na) concentration in sediment sample	40
4.4 Potassium (K) concentration in sediment sample	42
4.5 Ca and Mg concentration in sediment sample	44
4.6 Total organic carbon and Organic matter in sediment sample	.45
4.7 Texture analysis of sediment sample	.48
CHAPTER 5: CONCLUSIONS	.51
REFERENCES	.53
APPENDIX	.76
APPENDIX A: Total carbon and Organic matter	.76
APPENDIX B: Texture analysis	.77
APPENDIX C: Concentration of Na and K	.78
APPENDIX D: Concentration of Ca and Mg	.79