EFFECT OF SOIL COMPACTION ON GROWTH AND YIELD OF COWPEA (Vigna unguiculata (L.) Walp)

BY

GNANAPRAGASAM THADSHAINI

3

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2016

ABSTRACT

Soil compaction is a worldwide problem in modern agriculture and has been recognized as the main form of soil degradation. Soil compaction may increase soil strength and compacted soil layers can affect growth and yield of crops. The aim of this research was to investigate the effect of soil compaction on growth and yield of cowpea (*Vigna unguiculata* (L.) Walp). This experiment was conducted during *maha* season in 2015 at crop farm, Eastern university of Srilanka. This experiment was a pot experiment and there were four treatments based on different bulk density levels (1.33gcm⁻³, 1.60gcm⁻³, 1.80gcm⁻³, and 2.00gcm⁻³) arranged in a completely randomized design (CRD) with nine replicates. Wijaya, a variety of Cowpea was used for the experiment. All agronomic practices were followed as recommended by department of agriculture. Finally growth and yield parameters were taken by destructive sampling method.

The results revealed that soil compaction has significantly influenced on growth and yield of cowpea and the highest growth and yield parameters were recorded at treatment 1.33gcm⁻³(control) among all treatments and there was a strong negative correlation between these parameters and level of soil compaction. The lowest yield (37.10tons/ha) was recorded at soil compaction level 2.00 g cm⁻³, while the maximum yield (70.31tons/ha) was obtained at soil compaction level 1.33 g cm⁻³. It can be concluded from the result of this study that significant adverse effects of soil compaction on growth and yield of cowpea was well noticed.

Keywords: Bulk density, Root growth, Soil strength, Hydraulic conductivity, Pore space

i

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATES	viii
LIST OF ABBREVIATIONS	ix
CHAPTER 01	1
1.0 INTRODUCTION	1
1.1 OBJECTIVES OF THE STUDY	5
CHAPTER 02	6
2.0 LITERATURE REVIEW	6
2.1 CAUSES OF SOIL COMPACTION	6
2.1.1 RAINDROP IMPACT	6
2.1.2 TILLAGE OPERATIONS	6
2.1.3 WHEEL TRAFFIC	6
2.1.4 MINIMAL CROP ROTATION	7
2.1.5 PASTURE GRAZING	7
2.2 EFFECT OF SOIL COMPACTION ON SOIL PHYSICAL PROPER	TIES8
2.3 EFFECT OF SOIL COMPACTION ON PLANTS	
2.3.1 WATER RELATIONS	11
2.3.2 HORMONAL GROWTH REGULATORS	12
2.3.3 PHOTOSYNTHESIS	14
2.3.4 RESPIRATION	15
2.3.5 NUTRIENT AVAILABILITY AND UPTAKE	15

2.3.5.1 NITROGEN	
2.3.5.2 PHOSPHOROUS	18
2.3.5.3 POTASSIUM	19
2.3.6 SEEDLING EMERGENCE	
2.3.7 SHOOT GROWTH	
2.3.8 CANOPY GROWTH	
2 3 9 NODULATION	
2.3.10 ROOT GROWTH AND DISTRIBUTION	
2 3 11 YIELD OF CROPS	
CHAPTER 03	
3 0 MATERIALS AND METHODS	
3.1 EXPERIMENTAL SITE	
3.2 DURATION	
3.3 CLIMATE	
2.4 EVDEDIMENTAL DESIGN	36
2.5 LAVOUTOE THE EXPERIMENT	37
3.5 LA TOUTOF THE EXPERIMENT	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰
3.6 IREAIMENIS	
3.7 EXPERIMENTAL PROCEDURE	
3.8 CROP MANAGEMENT	
3.8.1 FERTILIZER APPLICATION	
3.8.2 IRRIGATION	
3.8.3 HARVESTING	
3.9 SAMPLING	
3.10 MEASUREMENTS	
3.10.1 GROWTH PARAMETERS	
3.10.1.1 PLANT HEIGHT	
3.10.1.2 NUMBER OF LEAVES PER PLANT	

3.10.1.3 LEAF AREA
3.10.1.4 MAXIMUM ROOT LENGTH
3.10.1.5 NUMBER OF NODULES PERPLANT
3.10.1.6 NUMBER OF ACTIVE NODULES PER PLANT
3.10.1.7 DRY MATTER ACCUMULATION AND DISTRIBUTION 41
3.10.2 YIELD PARAMETERS
3.10.2.1 NUMBER OF PODS PER PLANT
3.10.2.2 POD LENGTH
3.10.2.3 POD WEIGHT PER PLANT
3.10.2.4 AVERAGE NUMBER OF SEEDS PER POD
3.10.2.5 SEED WEIGHT
3.10.2.6 SEED YIELD
3.10.2.7 YIELD
3.11 STATISTICAL ANALYSIS
CHAPTER 0443
4.0 RESULT AND DISCUSSION
СНАРТЕВ 05
5.0 CONCLUSION
5.1 SUGESSTIONS FOR FUTURE RESEARCH
REFERENCES