EFFECT OF DIFFERENT SOIL AMENDMENTS ON GROWTH AND YIELD OF RICE (Oryza sativa.L) GROWN IN SALINE SOIL

BY

ILAKKIYA PATHMANATHAN

435

DEPARTMENT OF CROP SCIENCE
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY
SRI LANKA
2016

ABSTRACT

Rice (Oryza sativa) is widely consumed staple food in many part of the world. Growth and yield of rice was adversely affected by salinity in past years. There is lack of researches conducted about reclamation of saline soil by adding of amendments. Therefore the aim of this study was to investigate the effect of soil amendments on growth and yield of rice grown in saline soil. A pot experiment conducted during maha season during November 2015 to February 2016 in the crop farm, Eastern university of Sri Lanka. The experiment was complete randomized design (CRD) with 5 replications. Soil was artificially salinized by NaCl solution to above the EC 4 dSm⁻¹. Totally 25 pots examined with 4 type of soil amendments such as compost (1t/ha), green manure (1t/ha) and gypsum (0.08t/ha), ground lime stone (0.03t/ha) were used and no application of soil amendment considered as a control. Variety Bg-300 was used in the experiment. All the agronomical practices followed as recommended by department of agriculture. Growth and yield parameters were taken by destructive sampling method. In this experiment, Gliciridia amended soil had highest plant height (84.76cm), Leaf area per plant (769.24cm²), dry weight per plant (2.4g), highest Panicle length (25.6cm), Total spikelet per plant (374), Hundred seed weight per plant (2.36g) and Yield (1.5Ton/ha). Further, Gypsum amended saline soil gave highest Number of tillers per plant (7). It is concluded gliciridia suitable amendment that can be applied for saline soil to increase the growth and yield performance of rice (variety Bg 300).

Key words: Gliciridia, Gypsum, salinity, Sodium adsorption ratio, green manure

TABLE OF CONTENTS

	Page no
ABSTRACT	I
ACKNOLEDGEMENT	<u>II</u>
LIST OF TABLES	IX
LIST OF FIGURE	X
LIST OF PLATES	XI
CHAPTER 01	01
CHAPTER 02	05
0.1.0.1iitv	5
2.1.1 Saline soils	
2.1.2 Saline-sodic soils	7
2 4 G - Il Colinity Classes	/
2 1 5 Extent and distribution of saline soils	
2.1.6 Effect of salinity on nutrients 2.1.7 Effect of salinity on germination	10
2 1 8 Effect of salinity on plant growth	11
2 1 8 1 Effect of salinity on Leaf	14.
2.1.8.2 Effect of salinity on Shoot	14
2.1.8.4 Effect of salinity on biomass	14

2.1.8.5 Effect of salinity on yield	15
2.1.9 Effects of salinity on water relations	16
2.1.10 Effects of salinity on soil.	17
2.1.11 Irrigation water quality.	20
2.1.12 Salt problems	20
2.1.13 Crop tolerance to salinity	21
2.1.14 Saline soil reclamation	21
2.2 Correcting salt affected soils	22
2.2.1 Improving drainage	22
2.2.2 Leaching	22
2.2.3 Reducing evaporation	24
2.2.4 Chemical treatments	24
2.2.5 Irrigation	25
2.2.6 Soil amendments	29
2.2.7 Kind of amendments	30
2.2.8 Choice of amendments	31
2.2.9 Organic manures	32
2.2.10 Compost	32
2.2.11 Green manure	34
2.2.12 Supplying calcium to improve water infiltration	35
2.2.13 Gypsum	36
2.2.14 Limestone	38
2.2.15 Benefits of liming	39
2.3 Rice	39
2.3.1 Importance of rice	39

2.3.2 Scientific classification of rice	40
2.3.3 Rice as a reclamative crop.	
2.3.4 Rice in saline soils	41
2.3.5 Salt-tolerant rice from biotechnology	43
CHAPTER 03	
3.0 MATERIALS AND METHODS	44
3.1 Experimental site	44
3.2 Preparation of pots	44
3.2.1 Soil collection	44
3.2.2 Bag filling	44
3.2.3 Artificial salinization	44
3.2.4 Adding of soil amendments	45
3.3 Experimental design	45
3.4 Treatments	45
3.5 Lay out of design	46
3.6 Crop establishment	46
3.7 Agronomical practices	46
3.7.1 Irrigation	
3.7.2 Weeding	46
3.7.3 Fertilizer application	47
3.8 sampling	47
3.9 Measurements	48
3.9.1 Growth parameters	48
3.9.1.1 Plant height	48
3 9 1.2 Total number of tillers	48

3.9.1.3 Leaf area	48
3.9.1.4 Total dry weight	49
3.9.2 Yield parameters	49
3.9.2.1 Panicle length	49
3.9.2.2 Total number of panicle	49
3.9.2.3 Total number of spikelet	49
3.9.2.4 Hundred seed weight	49
3.9.2.5 Filled grain percentage	49
3.9.2.6 Seed yield	49
3.10 Statistical analysis	49
CHAPTER 04	51
4.0 RESULTS AND DISCUSSIONS	
4.1 Growth parameters	51
4.1.1 Plant height	51
4.1.2 Leaf area per plant	
4.1.3 Dry weight per plant	55
4.1.4 Number of tillers per plant	
4.2 Reproductive parameters	56
4.2.1 Panicle length	
4.2.2 Number of panicle per plant	57
4.2.3 Total spikelet per plant	58
4.2.4 Hundred Seed weight per plant	59
4.2.5 Filled grain percentage	60
4.2.6 Yield	61