ASSESSMENT OF GENETIC DIVERSITY IN SELECTED CAPSICUM SPP. CULTIVATED IN SRI LANKA

THILINI MADHUSHANI KUMARASINGHA

FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

2016

ABSTRACT

Simple Sequence Repeat (SSR) markers are useful tools for evaluating genetic diversity and DNA fingerprinting. The purpose of this study was to evaluate the genetic diversity within 10 chilli accessions by using microsatellite markers and morphological markers. Over the last few decades, the use of molecular markers has played an increasing role in chilli breeding and genetics. This research was conducted at the Division of Plant Biotechnology, Field Crops Research and Development Institute (FCRDI), Mahailluppallama, Anuradhapura, Located at 806' 0"N (latitude) and 80°27'0" E (longitude).

A fingerprint was developed in this study for ten chilli accessions using six Simple Sequence Repeat primers. DNA was extracted using modified CTAB protocol. Polyacrylamide gel electrophoresis was done to identify polymorphism in different alleles of polymerase chain reaction products. Amplified products varied from 140 bp to 290 bp. The molecular data were subjected to statistical analysis using PopGene.S2 software and genetic distances were calculated. The differences and relationships of ten chilli accessions were identified from the clusters in the dendrogram.

Molecular cluster analysis indicated two distinct clusters and many sub clusters. The first group contained Hen miris, MICH-3, ICPN-18-7 line, Arunalu, MI-2 and MI green. The second group contains Waraniya purple, Hot beauty, Purple Nai Miris (*C. chinense*) and Acc.No.11642 (*C. frutescent*).

This study revealed the genetic similarity between the varieties of Arunalu and M1-2. The most distant phylogenetic relationship was observed between Hot beauty and MICH-3 followed by MICH-3 and Waraniya Purple. MICH-3 is a variety developed

by the Field Crops Research and Development Institute (FCRDI), Mahailuppallama using parents (MI-1 and Wonder hot). Hot beauty and Waraniya Purple have been developed through selections from local landraces. Purple Nai Miris (*C. chinense*) and Acc.No.11642 (*C. frutescens*) both formed another subcluster with more distance. These accessions show genetic difference from the improved varieties.

According to morphological classification, Most of the accessions had green colour stems and Intermediate type of plant habits. White colour corolla and pendent type of flower position were common among the accessions.

Higher genetic variability within varieties and significant difference between varieties indicated rich genetic material of a species. Thus, microsatellite markers offer a potential, simple, rapid and reliable DNA fingerprinting method to evaluate genetic variation among the chilli germplasm. The findings of the present study have the potential applications in future breeding programme for the genetic improvement of chilli.

TABLE OF CONTENTS

CONTENTS	PAGI	E NO.
CONTENTS		I
ABSTRACT		Ш
ACKNOWLEDGEMENT		V
TABLE OF CONTENTS		
ABBREVIATIONS		IX
LIST OF TABLES		XI
LIST OF PLATES		XIII
LIST OF FIGURES		XIV
CHAPTER 01 INTRODUCTION		
1.1 Introduction		1
1.2 Objectives		6
		,
CHAPTER 02 REVIEW OF LITERATURE		
2.1 Chilli (Capsicum annuum L.)		7
• 2.2 Morphology and growth of chilli	7	8
2.3 Importance of Chilli	20 W	8
•		10
2.4 Chilli production in Sri Lanka		11
2.5 Varietal characteristics of selected accession	4	14
2.6 Germplasm characterization, conservation, evaluation an	nd	1.47
its significance in crop improvement		
2.7 Markers		

2.7.1 Morphological markers	15
2.7.2 Biochemical / Protein markers	16
2.7.3 Molecular markers	17
2.7.4 Properties desirable for ideal DNA markers	17
2.7.5 Different Molecular Markers	18
2.8 Microsatellites	19
2.9 DNA Fingerprinting Technique	21
2.10 Molecular markers in chilli genome analysis	22
2.11 DNA Extraction	23
2.12 Polymerase Chain Reaction (PCR)	25
2.13 Gel Electrophoresis	26
2.13.1 Agarose Gel Electrophoresis	26
2.13.2 Polyacrylamide Gel Electrophoresis	26
CHAPTER 03 MATERIALS AND METHODS	
3.1 Location	28
3.2 Experimental Period	28
3.3 Germplasm Collection	28
3.4 Chilli Seedlings	28
3.4.1 Transplanting of chilli	30
3.4.2 Management practices	30
3.5 Morphological data collection	30
3.6 Genetic Diversity Analysis through Microsatellite Markers	
3.6.1 Sample collection	32
3.6.2 Genomic DNA isolation	32

3.7 Confirmation of DNA concentration	33
3.7.1 Quantification of DNA concentration	34
3.7.2 DNA confirmation using Agarose gel electrophoresis	34
3.8 Molecular Detection with Specific primers	
3.8.1 Selection of primers	36
3.9 Polymerase chain reaction (PCR) amplification	
3.9.1 Reaction mix	37
3.9.2 Polymerase chain reaction (PCR) conditions	38
3.10 Gel visualization of PCR product	38
3.11 Polyacrylamide gel electrophoresis (PAGE)	38
3.12 Band is scoring and Statistical analysis	40
CHAPTER 04 RESULTS AND DISCUSSION	
4.1 Morphological characterization	41
4.2 Molecular Characterization of selected chilli accessions	
4,2.1 Determination of quality and quantity of extracted DNA	44
4.2.1.1 Determination of quality and quantity of DNA	45
through spectrophotometry	
4.2.1.2 Determination of quality and quantity of DNA	46
Through agarose gel electrophoresis	
4.2.2 PCR Amplification and Gel visualization	47
4.2.3 Polyacrylamide gel electrophoresis (PAGE)	49
4.2.4 Genetic analysis using PopGene.S2 software	52
4.2.5 Polymorphic information content	54
4.2.6 Genetic distance based analysis	54