VARIETAL EVALUATION OF SELECTED GROUNDNUT (Arachis hypogaea L.) CULTIVARS FOR MOISTURE STRESS TOLERANCE

By SUKANYA MUTHAIYA

DEPARTMENT OF AGRICULTURAL BIOLOGY
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY
SRI LANKA
2017

PROCESSED

ABSTRACT

There is a need to utilize water efficiently and effectively because water availability is scarce in the dry zone of Sri Lanka. Groundnut is grown in the Batticaloa district to limited extent; the yield is highly susceptible to moisture stress especially during the 'Yala' Season. This experiment was conducted at the Agronomy farm of the Eastern University, Sri Lanka. Studies were made to evaluate moisture stress tolerance of selected groundnut cultivars; 'Lanka jumbo', 'Tissa' and 'Indi' when the stress was imposed during the flowering stage and to determine the most suitable groundnut cultivar which can resist drought and produce substantial yield. This experiment was laid out in the Randomized Complete Block Design with six treatments and four replications and the treatments were arranged in 3 × 2 factorial manner. Moisture stress was imposed for the selected groundnut cultivars for a period of ten days during the flowering stage. The control plants were watered once in two days to field capacity.

There were significant (p<0.05) differences between treatments in the measured physiological and growth attributes. The highest amounts of chlorophylls (a 0.98 mgg⁻¹, b 0.79 mgg⁻¹ and total chlorophyll 1.7 mgg⁻¹) contents were observed in 'Indi' groundnut cultivar and the lowest amounts (chlorophylls a 0.47 mgg⁻¹, b 0.36 mgg⁻¹ and total chlorophyll 0.9 mgg⁻¹) were recorded in 'Tissa' groundnut cultivar. Moisture stress significantly (p<0.05) reduced the Relative Water Contents (RWC) of all the tested groundnut cultivars. The highest RWC was noticed in 'Indi' cultivar where the lowest was obtained in 'Tissa'.

Moisture stress significantly (p<0.05) reduced the Leaf Area Index (LAI) of all the tested cultivars. The highest LAI was observed in 'Indi' cultivar and the lowest was found in 'Tissa'. There were significant (p<0.05) differences between treatments in the

100 seed weight, shelling percentage and yield of selected groundnut cultivars. The highest 100 seed weight (24.6 g) was obtained in 'Indi' cultivar and the lowest (7.2 g) was found in 'Tissa' groundnut cultivar. 'Lanka Jumbo' showed the highest shelling percentage (62.4%) and the lowest (38.6%) was found in 'Tissa'. Moisture stress significantly (p<0.05) reduced the yield of all the tested groundnut cultivars. The highest yield (0.8 tonnesha⁻¹) was obtained in 'Indi' groundnut cultivar and the lowest (0.3 t ha⁻¹) was found in 'Tissa'.

There were also significant (p<0.05) interaction between cultivars and moisture stress treatments in the 'chlorophyll a', total chlorophyll, RWC, shelling percentage, 100 seed weight and yield of the tested cultivars. However, no significant (p>0.05) interaction was observed in the plant dry weight, number of pods per plant and 'chlorophyll b' content.

The highest yield obtained in 'Indi' groundnut cultivar under moisture stress condition would have been due to its inherent characteristic feature. Hence, considering the measured physiological and growth attributes, 'Indi' groundnut cultivar can resist drought better than the rest of the cultivars and could be suggested for cultivation in the drought prone soils of the Batticaloa district.

TABLE OF CONTENTS

		Page No
ABSTRACT		I
ACKNOWLEDGEMENTS		III
TABLE OF CONTENTS		IV
LIST OF TABLES		VIII
LIST OF FIGURES		IX
LIST OF PLATES		X
ABBREVIATIONS		XI
CHAPTER 1 INTRODUCTION		1
CHAPTER 2 LITERATURE REVIE	W	6
2.1 Oil seed crops		6
2.1.1 Groundnut		7
2.1.2 Origin and distribution		8
2.1.3 Taxonomy		9
2.1.4 Botanical description		9
2.1.5 Growth stages	· , , , , , , , , , , , , , , , , , , ,	10
2.1.6 Morphology and development	*	11
2.1.6.1 Root	· · · · · · · · · · · · · · · · · · ·	11
2.1.6.2 Stem		12
2.1.6.3 Leaf		12
2.1.6.4 Peg		12
2.1.6.5 Pod		12

2.1.7 Nutritional composition of groundnut	13
2.1.8 Importance of groundnut cultivation	15
2.1.9 Consumption pattern off groundnut	16
2.2 Worldwide groundnut cultivation	17
2.3 Cultivation in Sri Lanka	18
2.3.1 Cultivation in the Batticaloa district	19
2.4 Characteristic features of tested groundnut cultivars	20
2.4.1 Culitvar 'Tissa'	20
2.4.2 Cultivar 'Indi'	20
2.4.3 Cultivar 'Lanka Jumbo'	20
2.5 Moisture deficit stress	21
2.6 Effects of moisture deficit stress	22
2.6.1 Effects on Leaf Area Index	24
2.6.2 Effects on plant dry weight	25
2,6.3 Effects on Relative Water Content	26
2.6.4 Effects on chlorophyll contents	26
2.6.5 Effects on yield components	27
2.6.6 Effects on yield	
CHAPTER 3 MATERIALS AND METHODS	
3.1 Experimental site	30
3.2 Agronomic practices	30
3.2.1 Preparation of polyethylene bags	30
3.2.2 Collection of seeds	31
3 2 3 Dibbling of seeds	32

3.2.4 Fertilizer application	32
3.2.5 Weed management	32
3.2.6 Water management	
3.2.7 Rain shelter	33
3.2.8 Gypsum application	33
3.2.9 Earthing up	33
3.3 Treatment structure	33
3.3.1 Experimental design	34
3.4 Physiological measurements	35
3.4.1 Chlorophyll contents	35
3.4.2 Relative Water Content	38
3.5 Growth attributes	39
3.5.1 Leaf Area Index	39
3.5.2 Plant dry weight	39
3.6 Yield and yield components	40
3.6.1 Number of pods per plant	40
3.6.2 Shelling percentage	40
3.6.3 100 seèd weight	40
3.6.4 Yield	40
3.7 Soil moisture content analysis	41
3.7 Analysis of data	41
CHAPTER 4 RESULTS AND DISCUSSION	42
4.1 General appearance of plants	42
4.1.1 Regularly watered plants	42

4.1.2 Water stressed plants)
4.2 Soil moisture content	3
4.3 Physiological measurements	3
4.3.1 Chlorophyll content	3
4.3.2 Relative Water content	6
4.4 Growth attributes	7
4.4.1 Leaf Area Index4	7
4.4.2 Plant dry weight4	9
4.5 Yield and yield components5	1
4.5.1 Number of pods per plant5	1
4.5.2 Shelling percentage	3
4.5.3 100 seeds weight	4
4.5.4 Yield5	6
CHAPTER 5 CONCLUSIONS5	9
SUGGESTIONS FOR FUTURE STUDIES6	0
REFERENCES6	1
APPENDICES	