INFLUENCE OF CHEMICAL AND NANO-NITROGEN FERTILIZERS ON THE GROWTH AND YIELD OF RICE (*Oryza sativa* L.) CULTIVAR "Bg 250"

By

R. M. NIWANTHAKA NAMAL RATHNAYAKE

DEPARTMENT OF AGRICULTURAL BIOLOGY FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA 2017

PROCESSED Main Library, EUSI

ABSTRACT

Fertilizers play an important role where the ancient chemical fertilizers are replaced with nano and bio-fertilizers with their efficiency and environment friendly nature. Primary use of adding Nano fertilizer is fast uptake of nutrients from the soil and giving better and quicker yield. The symbiotic exchange between soil and plant system is very efficient. A pot experiment was conducted at the Rice Research Station, Sammanthurai, Sri Lanka involving the use of NPK fertilizers and Nano-Nitrogen fertilizer to test the growth attributes and yield of rice cultivar 'Bg 250'.

The experiment was laid out in the Randomized Complete Block Design with five treatments and four replications and experiment was conducted in plastic pots (25cm height and 40cm diameter). The seeds were wrapped with net cotton cloth and 3 days after germination, the uniform and healthy seedlings were transplanted in the plastic pots. Number of 10 seedlings were raised in each plastic pot. There were altogether 20 plastic pots. Five treatments viz; T₁ – Control (No fertilizer), T₂ – $\frac{1}{2}$ 00% recommended chemical fertilizer (Urea, TSP and MOP), T₃ – 75% Urea + 25% Nano- Nitrogen fertilizer, T₄ – 50% Urea + 50% of Nano- Nitrogen fertilizer and T₅ – 100% Nano-Nitrogen fertilizer were applied.

The results revealed that there were significant (p<0.05) differences between treatments in the tested parameters. The application of 100% Nano-Nitrogen fertilizer has given the highest growth performance with regard to plant height (57.9cm), number of tillers plant⁻¹ (6), flag-leaf length (68.6cm), plant dry weight (9.9g), chlorophyll contents (chlorophyll a - 1.7mgg⁻¹, b - 1.4 mgg⁻¹ and total chlorophyll – 3.1mgg⁻¹), yield and yield components.

I

TABLE OF CONTENTS

ABSTRACT	I
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	IV
LIST OF TABLES	
LIST OF FIGURES	IX
LIST OF PLATES	X
ABBREVIATIONS	XI
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	
2.1 Cereal grains	
2.2 Rice	9
2.2.1 Domestication and cultivation	
2.2.2 Taxonomy	
2.2.3 Botany	
2.2.3.1 Root system	
2.2.3.2 Culm	
2.2.3.3 Leaves	
2.2.3.4 Panicle	
2.2.3.5 Spikelets	
2.2.3.6 Grains	
2.2.4 Growth stages	
2.2.4.1 Vegetative phase	
2.2.4.2 Reproductive phase	17

2.2.4.3 Ripening phase
2.3 Importance of rice cultivation
2.4 Nutritional composition
2.4.1 Starch
2.4.2 Protein
2.4.3 Fat
2.4.4 Minerals
2.5 Type of fertilizers used in rice
2.5.1 Nitrogen fertilizer
2.5.2 Potassium fertilizer
2.5.3 Phosphorus fertilizer
2.6 Nano fertilizer
2.6.1 Importance
2.7 Achievement of nano fertilizer
2.8 Róles of nano fertilizer
CHAPTER 3 MATERIALS AND METHODS
3.1 Experimental Site
3.2 Preparation of pots
3.3 Collection of seeds
3.4 Raising of seedlings
3.5 Water management
3.6 Weed managment
3.7 Insect proof net
3.8 Treatments

3.8.1 The experiment design	
3.9 Physiological attributes	
3.9.1 Chlorophyll contents (chlorophyll a, b and total)	
3.10 Growth attributes	
3.10.1 Plant height	
3.10.2 Leaf Area Index	
3.10.3 Plant dry weight	
3.10.4 Total number of tiller plant ⁻¹	
3.10.5 Flag- leaf length	
3.11 Yield and yield components	
3.11.1 Panicle length	
3.11.2 1000 grain weight	
3.11.3 Yield	
3.12 Analysis of data	
	١
CHAPTER 4 RESULTS AND DISCUSSION	40
4.1 Physiological attributes	40
4.1.1 Chlorophyll contents	40
4.2 Growth attributes	41
4.2.1 Plant height	41
4.2.2 Leaf Area Index	
4.2.3 Plant dry weight	45
4.2.4 Total number of tiller plant ⁻¹	47
4.2.5 Flag-leaf length	