IDENTIFICATION OF BIOTYPES OF BROWN PLANTHOPPER (Nilaparvata lugens Stal) IN THE BATTICALOA DISTRICT

BY

U. L. D. P. R. GUNASINGHE

1

Project Report Library - EUSL

DEPARTMENT OF AGRICULTURAL BIOLOGY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2017

PROCESSED Main Library, EUSI

ABSTRACT

Brown Planthopper (BPH) is the most destructive pest especially in irrigated rice in Sri Lanka. It affects rice crop at all stages of plant growth. BPHs are considered as the main constraints limiting rice yields in tropical environments and it is acting as virus vector also. Bg-357 and Bg-366 are the rice varieties released by Department of Agriculture in the year 1997 and 2009 for economical cultivation, which were moderately resistant to BPH.

Batticaloa is the one of major rice-growing districts in Sri Lanka. There are some problems related to rice production in the Batticaloa district, *viz.*, water scarcity, late cultivation and infestation of BPH. Mandur is the major rice-growing area in the Batticaloa district and in this area the damage from the BPH is very severe. This was mainly due to the late cultivation of rice.

Because of the water scarcity, farmers go for late cultivation in the later part of the *Yala* season. Farmers in early-cultivated areas apply insecticides to control the problem of BPH and do not follow the recommended rate of application. The farmers also change the insecticide season to season, which may lead to the development of biotypes in BPH and resistant BPHs migrated towards the fields, which were cultivated at later part of season.

In Mandur area most of farmers cultivated Bg-357, Bg-366 and Bg-94-1 rice varieties. Even though Bg-366 and Bg-357 are moderate resistant rice varieties, they were severely affected by BPH with 25-50% and 50-70% yield loss respectively in Mandur area.

i

This may be due to the emergence of a virulent BPH population, which can be a new biotype capable of breaking the resistance of Bg-366 and Bg-357.

In order to confirm the biotypes of BPH, the BPH samples were collected from the Rice Research Development Institute (RRDI), Batalagoda and Batticaloa district especially Mandur and Kokkadichcholai areas and undergone for the morphological and genetic characterization. The morphological study showed that there were differences between the BPH samples collected from the Mandur area and Batalagoda and Kokkadicholai areas. The BPH samples of Mandur area have nodes through the vein system, which was not observed in the Batalagoda and Kokkadichcholai areas.

Polymerase Chain Reaction (PCR) amplifications were carried out using Microsatellite markers for each sample of BPH. As the analysis of PCR products of marker 7314 by gel electrophoresis did not show the polymorphism it was suggested to do further study up to DNA sequencing for all samples of BPH to observe the Polymorphism.

TABLE OF CONTENTS

Page No

ABST	RACT	i
ACKN	NOWLEDGEMENTS	iii
ABBR	REVIATION AND ACRONYMS	iv
TABL	JE OF CONTENTS	v
LIST	OF TABLES	viii
LIST	OF FIGURES	ix
LIST	OF PLATES	xi
СНАР	PTER 1	1
INTR	ODUCTION	1
CHAF	PTER 2	6
LITE	RATURE REVIEW	۲ 6
	2.1 Classification of BPH	6
	2.2 Taxonomic Notes	6
	2.3 Distribution	7
	2.4 Commercial Hosts and Pest Status	
	2.5 Morphology of Brown Planthopper	9
	2.5.1 Mature stage	9
	2.5.2 Immature stages	13

•

2.5.2.1 Eggs	
2.5.2.2 Nymphs	15
2.6 Biology of BPH	16
2.6.1 Dispersal	18
2.6.2 Fecundity	19
2.7 Host plants	
2.7.1 Cropping Pattern	20
2.7.2 New High Yielding Varieties	20
2.7.3 Planting Method	21
2.7.4 Plant Age	
2.8 Varietal Resistance to the Brown Planthopper	
in Sri Lanka	23
2.9 Brown Planthopper Biotypes in Sri Lanka	24 ۲
CHAPTER 3	26
MATERIALS AND METHODS	26
3.1 Questionnaire Survey	26
3.2 Collection of Insects	26
3.3 Morphological Differentiation	26
3.4 Genetic Differentiation	27
3.4.1 Genomic DNA Isolation	27

3.4.2 Microsatellite (SSR) Analysis	
3.5 Data Analysis	28
CHAPTER 4	29
RESULTS AND DISCUSSION	29
4.1 Questionnaire Survey	29
4.1.1 Rice Varieties	29
4.1.2 Rice Establishment Methods	30
4.1.3 Frequency of Weed control per season	31
4.1.4 Frequency of Insecticide application	
for BPH per season	
4.1.5 Area affected by BPH in Mandur area	33
4.1.6 Yield loss by BPH in Mandur area	34
4.2 Identification of Biotypes of BPH	
by Morphological characterization	35
4.3 Identification of Biotypes of BPH by PCR	
and DNA sequencing	
CHAPTER 5	40
CONCLUSIONS	40
SUGGESTION FOR FUTURE RESEARCH	41
REFERENCES	42
APPENDICES	