EFFECT OF MOISTURE ABSORBENT HYDRO POLYMER (ZEBA) ON GROWTH OF COCONUT (*Cocos nucifera* L.) SEEDLINGS IN THE COCONUT NURSERY

2

BY

P. GAYASHINI KELUM PERERA

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2017

ABSTRACT

Coconut palm is one of the most important plantation crop worldwide. Success of coconut plantation establishment starts with the production of good quality planting materials. Selecting the best planting materials before field planting assures higher productivity. Cost of production of coconut seedling is very high in coconut nurseries, because coir dust is becoming a scarce resource even within the Coconut Triangle. Therefore, the use of coir dust in the potting mixture might not be a feasible proposition in the near future. Therefore it was considered imperative to test the suitability of other options available locally. Moisture absorbent hydro polymer (Zeba) is one the best alternative to the coir dust used in potting media of coconut seedlings. Therefore an experiment was conducted to investigate the effect of moisture absorbent hydro polymer on growth of coconut seedlings and water retention characteristics of the soil.

The experiment was carried out under a plant house and laboratory of the Agronomy Division, Coconut Research Institute of Sri Lanka (CRI), Lunuwila. The experiment was laid out in the Complete Randomized Design (CRD) with twelve replicates.

Different potting mixtures were used as treatments such as T_1 – top soil: organic manure: coir dust, 1:1:1, T_2 – top soil: organic manure: moisture absorbent compound, 1:1, T_3 – top soil: moisture absorbent compound, 1:1, T_4 – top soil: coir dust, 1:1. Measurements were taken and data were statistically analyzed.

There was no significant difference (P>0.05) among tested treatments in seedling girth and root volume. The results revealed that there were significant (P<0.05) differences among the treatments on seedling height, number of fully opened leaves, leaf area, dry

i

leaf area, dry shoot weight, dry root weight, soil moisture content and soil water retention capacity. Plant growth rate was increased in T_1 .

According to the chi square values, there was significant (P<0.05) differences among the treatments on number of fully opened leaves at 10th and 12th weeks after planting. T₁ exhibited the highest seedling height, number of fully opened leaves, leaf area, dry shoot weight, dry root weight. Same as the T₁ (top soil, coir dust and organic manure) potting mixture, the T₃ (top soil and moisture absorbent) potting mixture also caused to the considerable increase in plant height, number of fully opened leaves, leaf area, dry shoot weight, dry root weight of coconut seedlings while T₃ exhibited highest soil moisture content and water retention capacity also. Therefore application of moisture absorbent hydro polymer could be used to get maximum growth and soil moisture characteristics of coconut seedlings. Then cost of production of coconut seedlings may be reduced.

Keywords: Coconut, plantation, planting material, coir dust, moisture absorbent hydro polymer

4

TABLE OF CONTENT

ABSTRACTi
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURESx
LIST OF PLATES
ABBREVIATIONS
CHAPTER 1
INTRODUCTION
Objectives5
CHAPTER 2
2.0 Review of Literature
2.1 Coconut
2.1.1Coconut palm
2.1.2 Taxonomy
2.1.3 Proximate composition
2.1.4 Origin and distribution of Coconut
2.1.5 The place of coconut in the world and its position in Sri Lanka9
2.1.6 Sri Lanka coconut production11
2.1.7 Production of quality planting materials and its importance,
2.1.8 Types of coconut nursery13
2.1.8.1 Conventional nursery
2.1.8.2 Polybag nursery15
2.1.8.3 Pre nursery preparation15
2.1.8.4 Raising coconut seedlings in poly bags17
2.1.8.5 Advantages of polybag seedlings
2.1.9 Coconut nursery management
2.1.9.1 Selection of the Nursery site
2.1.9.2 Nursery Beds
2.1.9.3 Moisture conservation in Soil bed
2.1.9.4 Irrigation
2.1.9.5 Weed control
2.1.9. 6 Termite attack

2.1.9.7 Removal of non	-germinated seedling	21
2.1.9.8 Removal of low	v quality seedlings	22
2.1.10 Water requirement	for coconut nursery	22
2.1.10.1 Moisture cons	ervation in coconut nursery	23
2.1.10.2 Importance of	moisture conservation	23
2.1.10.3 Method of mo	isture conservation	25
2.1.10.4 Problems in co nurseries in Sri Lanka	onventional moisture conservation method	ds in coconut 26
2.1.10.5 Materials used	to conserve moisture in potting media	27
2.2 Starch-based moisture a	bsorbent (Zeba)	27
2.2.1 Different sizes of pa	articles of moisture absorbent (Zeba)	
2.2.1.1 ZEBA XL (Lar	ge Granule Formulation)	
2.2.1.2 ZEBA SP (Sma	all Granule size)	
2.2.1.3 ZEBA RD (Pov	wdered Formulation)	31
2.2.2 Key benefits of moi	sture absorbent	31
CHAPTER 3		32
3.0 MATERIALS AND MET	THODS	32
3.1 Description of the Exper	rimental Site	32
3.2 Poly bag preparation		
3.3 Collection of different in	ngredients for potting media	33
3.4 Experiment		
3.4.1 Experimental Proce	dure	
3.4.1.2 Preliminary stud	dy	
3.4.2 Pot Culture Experim	nent	
3.4.3 Treatments	-	
3.4.4 Laying in poly bags		
3.4.5 Experimental Desig	n	
3.4.6 Agronomic Practice	'S	40
3.4.7 Irrigation		40
3.4.8 Fertilizer application	n	40
3.4.9 Pest and disease cor	ntrol	41
3.4.10 Weeding		41
3.5 Measurements		41
3.5.1 Seedling height	<u> </u>	42
3.5.2 Seedling girth	10 (s)	42

3.5.3. Number of fully opened leaves	
3.5.4 Leaf area	42
3.5.5 Potting media moisture content	
3.5.6 Moisture requirement of the potting media	43
3.5.7 Volume of the roots	43
3.5.8 Dry shoot biomass	
3.5.9 Dry root biomass	
3.6 Cost analysis	44
3.7 Statistical analysis	44
CHAPTER 4	45
4.0 RESULT AND DISCUSSION	45
4.1 Seedling height	45
4.2 Number of fully opened leaves	50
4.3 Leaf area	51
4.4 Dry weight of shoot	53
4.5 Dry weight of roots	54
4.6 Seedling girth	56
4.7 Root volume	58
4.8 Moisture content	
4.9 Water retention Capacity	61
4.10 Cost analysis	62
CHAPTER 5	63
5.0 CONCLUSION	63
SUGGESTIONS FOR FURTHER STUDIES	65
REFERENCES	66
APPENDIX	79
