APPLICATION OF DIFFERENT LEVELS OF COMPOST AND

BIOCHAR ON GROWTH PERFORMANCE OF Glycine max (L.)

1

Actin Library,

2

BY

M.G. RUVINI RADHIKA KUMARI SENEVIRATHNE

FACULTY OF AGRICULTURE

4

EASTERN UNIVERSITY

SRI LANKA

2017

ABSTRACT

Biochar is a black carbon product derived by the pyrolysis of organic materials. Compost is the product of degraded organic matter by composting process. Both are cost effective and environment friendly soil amendments which is used in the crop production to improve plant available nutrient content. In this context, experiment was conducted to identify the effect of different levels of compost and biochar on the growth performance of *Glycine max*. (L).

The pot experiment was conducted in a Crop Farm, Eastern University, Sri Lanka. The experimental design was Complete Randomized Design (CRD) with six treatments and six replicates. In this experiment different levels of compost with biochar and inorganic fertilizer was used. The treatments were T1- 100% compost, T2-75% compost with 25% biochar, T3- 50% compost with 50% biochar, T4- 25% compost with 75% biochar, T5- 100% biochar and T6- inorganic fertilizer (control).

The growth parameters were statistically analyzed and the outputs showed significantly (p<0.05) increase among the treatments on plant height (3.25%), number of leaves (13.04%), leaf area (17.25%), chlorophyll content (15.2%), number of flowers (12.67%), nodule numbers (27.74%), effective nodules (39.16%) and the total biomass (16.52%). Plant height, number of leaves and the chlorophyll content was not significantly affected at the initial stage. However, all the observed parameters were statistically significant at 6th week after planting.

The experiment revealed that T4 treatment (25% compost with75% biochar) showed significant increase in number of leaves, leaf area, chlorophyll content and number of flowers when compared to other treatments. However, total biomass in T4 and T6 treatments were not significantly different. Therefore, 25% compost with 75% biochar

TABLE OF CONTENTS

ABSTRACTi
ACKNOWLEDGEMENT iii
TABLE OF CONTENTSiv
LIST OF TABLESix
LIST OF FIGURESxi
ABBREVIATIONS xiii
CHAPTER 11
1.0 INTRODUCTION
1.1 Soybean
1.1.1 Benefits of soybean
1.1.2 Soybean cultivation in Sri Lanka2
1.2 Soil Amendments in crop production
1.2.1 Benefits of soil amendments
1.2.2 Classification of soil amendments
• 1.3 Objective of the study
CHAPTER 02
2.0. LITERATURE REVIEW
2.1 Soybean
2.1.1 Common names for <i>Glycine max</i> (L.)
2.1.2 Domestication and History7

21.3	Botany of soybean	7
2.1.3.	.1 Scientific classification of <i>Glycine max</i> (L.)	8
21.4	Morphology of Soybean plant	8
2.1.5	Growing conditions for Soybean	9
2.1.6	Growth stages of soybean	9
2.1.7	Nutrition value of soybean	10
2.1.8	Soybean production scenario	11
2.1.8	.8.1 World scenario of soybean	11
218	8.2 Sri Lankan scenario of Soybean	12
2.1.0	Decommended varieties in Sri Lanka.	13
2.1.9	Southean cultivation extend and production in Sri Lanka	14
2.1.10		15
2.2 B	History of biochar	15
2.2.1	Draduction of biochar	16
2.2.2	2.2.1 Durchusis process	16
2.2	3 Overview of biochar	18
	2.3.1 Chemical composition of biochar	18
2	2.2.3.2 Porous structure of Biochar	18
2.	2.2.3.3 Components of Biochar	
2.	2.2.3.4 Properties of biochar	19
2.	2.2.3.5 Size of biochar particles	20
2.2.4	.4 Application rate	21

2.2.5	Application methods	21
2.2.6	Frequency of application.	22
2.2.7	Effect of biochar on soil proprieties	22
2.2.8	Effect of biochar on plant growth	23
2.2.9	Application of biochar for the soybean cultivation	23
2.3 Co	mpost	24
2.3.1	History and definition	24
2.3.2	Composting process	25
2.3.2	2.1 Factors affecting effective composting process	26
2.3.2	2.2 Stages in composting process	27
2.3.3	Sources of compost preparation	27
2.3.3	3.1 Farm yard manure	27
2.3.3	3.2 Green manure and crop residues	
2.3.4	Potential uses of compost	29
2.3.5	Effect of compost in soil properties	
2.3.	5.1 Soil physical properties	
2.3	.5.2 Chemical properties	30
2.3.6	Plant available nutrients in compost	31
CHAPTER	3	32
3.0 Material	ls and Methods	32
3.1 Lo	cation	
3.2 Ex	perimental setup	

3.2.1	Compost	
3.2.2	Biochar	
3.2.3	Inorganic Fertilizer	
3.3 Cha	racterization of biochar and compost	
3.4 Pot	preparation	
3.5 Exp	erimental design	35
3.6 Des	cription of treatment	
3.7 See	d collection	
3.8 Get	mination test	
3.9 Ag	ronomic practices	
3.9.1	Planting and thinning out	
3.9.2	Irrigation	37
3.9.3	Weeding	
, 3.9.4	Treatment application	
3.9.5	Pest and disease control	37
3.10 Ag	ronomic parameters	
3.10.1	Plant height	
3.10.2	Leaf number	37
3.10.3	Leaf area	
3.10.4	Number of flowers per plant	
3.10.5	Fresh and dry shoot biomass	
	17.04	

3.10.6	Fresh and dry root weight	
3.10.7	Number of nodules	
3.10.8	Number of effective nodules	
3.10.9	Weight of Nodules	
3.10.10	0 Maximum root length	
3.10.1	1 Chlorophyll content	
3.11 St	tatistical analysis	
CHAPTER	ξ 4	40
4.0 RESUI	LT AND DISCUSSION	40
4.1 P	lant height	
4.2 N	Number of leaves per plant	
4.3 L	eaf area	
4.4 C	Chlorophyll content	46
4.5 N	Number of flowers	
4.6 T	Fotal number of nodules and effective nodules of plant	53
4.7 T	Fotal biomass	56
CHAPTE	R 5	59
5.1 CONC	CLUSION	
5.2 SUGO	GESTIONS	60
REFFERE	ENCES	61