EFFECT OF CONVENTIONAL, ORGANIC AND NATURAL FARMING SYSTEM ON SOIL PROPERTIES AND PERFORMANCE OF COWPEA (Vigna unguiculata)

BY

IVAN DUNSTON GABRIEL

DEPARTMENT OF AGRICULTURAL CHEMISTRY FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

2017

ABSTRACT

Due to increasing rate of population the food availability is limited and farmers are adopting different farming systems to meet the demand. But sustainable and successful management of resources for agriculture to satisfy changing human needs, without degrading the environment or the natural resources is lacking. Therefore, this study was conducted at Agronomy farm, eastern university during October to December, 2017 to study the impact of organic, natural and conventional farming systems on physical and chemical properties of soil and also to evaluate the soil fertility status of the same.

Three different farming systems were practiced in randomized completed block design with five replications and fifteen plots were labelled. To find out the most suitable farming system, waruni variety of cowpea was selected and grown. Priod from 2nd week to 5th week the growth parameters such as plant height, leaf number, branch number, days to fifty percentage flowering were observed and recorded. The yield parameters such as pod number and pod weight were observed and recorded. Initial and end (60 days after planting) soil samples were collected and soil properties such as bulk density, particle density, porosity, electrical conductivity, organic matter content, and microbial activity were analyzed. All the experimental data were analyzed statistically with Duncan Multiple Rang Test (DMRT) at 5% significant level by using SAS 9.1 application statistical package. Analyzed growth parameters and soil physical and chemical properties were compared among those three farming systems.

Natural farming had improved in growth performance, physical and chemical properties of soil compared to other two farming systems where the low level of bulk density and particle density were found as 1.1331 gcm⁻³, 2.4715 gcm⁻³ and high level of plant height, leaf number, branch number, pod number, pod weight per plot, porosity,

electrical conductivity, organic matter content and microbial activity were found as 39.556cm, 23, 7, 261.4, 176.646g, 54.1503%, 67.2µs, 5.9871% and 87.3491 mg CO_2 / 1g soil respectively.

Moreover, natural farming system was found to have better improvement than organic and conventional farming system in above growth parameters, physical and chemical properties of soil. This study also showed that the natural farming system improves the soil properties with minimum negative impact on the environment.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
CHAPTER ONE	1
1.0 INTRODUCTION	1
CHAPTER TWO	7
2.0 LITERATURE REVIEW	
2.1 Soil Fertility	
2.1.1 Need for improving soil fertility.	9
2.2 Farming systems in the world	9
2.3 Farming systems in Srilanka	11
2.4 Conventional farming system	14
2.4.1 Advantage of conventional farming syste;n	14
2.4.2 Disadvantage of conventional farming system	15
2.4.3 Impact of conventional farming on soil property	16
2.4.4 Impact of conventional farming on food quality	17
2.4.5 Impact of conventional farming on environment	18
2.5 Organic farming system	18
2.5.1 Advantage of Organic farming system	
2.5.2 Disadvantage of Organic farming system*	20
2.5.3 Organic farming and continuous supply of food to meet demand	
2.6 Natural farming system	22
2.5.1 Advantage of Natural farming system	23
2.6.2 Disadvantage of Natural farming system	24
2.6.3 Impact of Natural farming on soil property	24
2.7 Cowpea	24
2.8 Importance of different farming system on physical properties of soil	25
2.8.1 Bulk density	25
2.8.2 Particle density	
2.8.3 Porosity	28

2.9 Importance of different farming system on chemical properties of soil	29
2.9.1 pH	29
2.9.2 Electric Conductivity	30
2.9.3 Microbial Activity	31
2.9.4 Organic matter content	32
CHAPTER THREE	33
3.0 Materials and Methodology	33
3.1 Experimental site	33
3.2 Variety	33
3.3 Treatment	33
3.4 Experimental Design	33
3.5 Field Layout	34
3.6 Flor Size	34
3.7 Agronomic Practices	34
3.7.1 Land Preparation	34
3.7.2 Seed Treatment	34
3.7.3 Dibbling of Seeds	35
3.7.4 Fertilizer Application	
3.7 5 Irrigation	
3.7.5 Weeding	
3.7.7 Pest and Disease Managements	.36
3.8 Plant growth parameters	.36
3.8. Plant Height	.36
3.8.2 Leaf Number	
3.8.3 Branches	
3.8.4 Root Volume	
3.8.5 Days to 50 percentage Flowering	
3.9 Soil parameters	
3.9.1 Microbial activities	
3.9.2 Particle density	
3.9.3 Porosity	
3.9.4 Bulk Density	
3.9.5 pH	
3.9.6 Electrical Conductivity	
3.9.7 Organic matter content	
3.10 Yield Parameters	

3.10.1 Pod number	38
3.10.2 Weight of pod per plot	38
3.11 Statistical analysis	38
CHAPTER FOUR	39
4.0 RESULTS AND DISCUSSION	39
4.1. Plant growth parameters	39
4.1.1. Plant Height	39
4.1.2. Leaf Number	42
4.1.3. Branch Number	44
4.1.5. Days to 50% flowering	46
4.2. Soil parameters	46
4.2.1. Bulk Density	46
4.2.2. Particle Density	48
4.2.3. Porosity	50
4.2.4. Electrical conductivity	52
4.2.5. Organic matter Content	54
4.2.6. Microbial Activity	56
4.3. Yield parameters	58
4.3.1. Number of pods	58
4.3.2. Weight of pods per plot	60
CHAPTER FIVE	62
5.0 SALIENT FINDINGS AND CONCLUSIONS	62
5.1. SALIENT FINDINGS	52
5.2. CONCLUSIONS	63
5.3. SUGGESTIONS AND RECOMMENDATION	63
REFERENCE	
PLATES	81
APPENDIX	86