IMPACT OF SLOW RELEASING FERTILIZER ON NUTRIENTS LEACHING AND GROWTH PERFORMANCE OF CHILLI (*Capsicum annuum* L.) IN SANDY SOIL

Ś

R.M.P.HARSHANI RATHNAYAKA

BY

DEPARTMENT OF AGRIC.CHEMISTRY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRILANKA

2017

PROCESSED Main Library, EUSL

ABSTRACT

Over use of inorganic fertilizer leads to the loss of soil fertility especially on sandy soil and Proper fertilizer management can reduce nutrients leaching while enhance the sustainability of crop production. The present experiment was carried out to study the influence of multi - nutrients (NPK) slow release fertilizer on the nutrients leaching and soil fertility status of Chilli in sandy soil at soil science laboratory, Eastern University, Sri Lanka during June to November 2017. This slow release fertilizer was tested in comparison with split application of inorganic fertilizer and farmyard manure in a complete randomized design. These four treatments including control (without fertilizer) were replicated in to four times. In the first part of the experiment leaching column study was conducted. In two weeks interval leachates were analyzed for Nitrogen, Phosphorus and Potassium content.

The results revealed that slow release fertilizer improved the soil fertility through reducing the total leaching loss of Phosphorus (0.557 mg/l) and potassium (0.866 mg/l) from soil columns. Split application of inorganic fertilizer recorded higher total Phosphorus (0.836 mg/l) and Potassium (1.03 mg/l) concentration in leachates. Total leached Phosphorus (01399 mg/l) and Potassium content (0.63 mg/l) of farm yard manure was lower than slow release fertilizer and split application of inorganic fertilizer. Regarding to leaching loss of Nitrogen, slow release fertilizer recorded the higher total Nitrogen concentration in leachates (0.775 mg/l) than split application of inorganic fertilizer fertilizer (0.719 mg/l) and farmyard manure (0.393 mg/l). Control, without any fertilizer

or manure recorded least Nitrogen (0.137 mg/l), Phosphorus (0.189 mg/l) and Potassium (0.099 mg/l) leaching.

At the second part of the study field experiment was conducted and the growth and quality parameters were analyzed. According to results growth and quality parameters of Chilli plants were not significantly increased when slow release fertilizer compared with split application of inorganic fertilizer. But highest Nitrate (1.11 mg/g), Phosphorous (7.27 mg/g) and potassium (0.84 mg/g) content were detected in Chilli plants which treated by slow release fertilizer. At harvest highest soil Nitrogen content recorded by slow release fertilizer treated soil (0.455 mg/g) and was followed by farmyard manure (0.300 mg/g) and inorganic fertilizer (0.248 mg/g). Among all the treatments Phosphorus availability was higher in farmyard manure treated soil (9.325 mg/g) and slow release fertilizer treated soil ranked second (8.435 mg/g).

5

TABLE OF CONTENTS

CHAPTER ONE	01
1.0 INTRODUCTION	01
1.1. Objectives of the study	05
CHAPTER TWO	06
2.0. LITERATURE REVIEW	06
2.1. Nutrient leaching	06
2.1.1. Nutrient leaching in sandy Regosol soil	08
2.2. Fertilization and Environmental Quality	08
2.3. Importance of major nutrients in plants	09
2.4. Nutrient use efficiency	
2.5. Fertilizer nutrients management strategies	12
2.5.1. Inorganic fertilizer based strategies	12
2.5.1.1. Appropriate Nutrients application rate	
2.5.1.2. Split application of inorganic fertilizer	13
2.5.1.3. Slow release fertilizer application	14
2.5.1.3.1. The Difference between Slow Release Fertilizers and Con Release Fertilizers	trolled 16
2.5.1.3.2. Advantages of Using Slow Release Fertilizer	
2.5.1.3.3. Disadvantages of Using SRFs	18
2.5.2. Organic fertilizer based strategies	18
2.5.2.1. Farm yard manure (FYM)	
2.6. Chilli (<i>Capsicum annuum</i> L)	21
2.6.1. General characteristics of MI - 2	22
CHAPTER THREE	23
3.0. MATERIALS AND METHODS	23
3.1. Collection of soil samples and farmyard manure	23
3.2. Climate	

3.3. Macro nutrient content of initial soil sample and Farmyard manure	24
3.4. Treatments and experimental design	24
3.5. Preparation of leaching columns	26
3.5.1. Leaching of soil column and leachate collection	
3.5.2. Analysis of leachate	27
3.6. Preparation of poly bag experiment	28
3.6.1. Soil collection	28
3.6.2. Poly bags filling	28
3.6.3. Adding of fertilizers	28
3.6.4. Crop establishment	
3.7. Agronomic practices	
3.7.1. Irrigation	28
3.7.2. Weeding	
3.8. Data collection of plants	
3.9. Final Soil analysis	29
3.10. Analysis of plants	29
3.11. Analysis of results	
CHAPTER FOUR	31
4.0. RESULTS AND DISCUSSION ,	
4.1. Chemical properties of leachate	
4.1.1. Nitrogen content (N)	31
4.1.2. Phosphorous content (P)	33
4.1.3. Potassium content (k)	35
4.2. Plant growth parameters	37
4.2.1. Plant height	37
4.2.2. Number of leaves	
4.3. Effect of fertilizers and manure on major nutrients content of plants	
4.3.1. Nitrogen content in plants	

4.3.2. Phosphorous content in plants	42
4.3.3. Potassium content in plants	45
4.4. Effect of fertilizers and manure on soil residual nutrients	46
4.4.1. Soil available Nitrogen	46
4.4.2. Soil available Phosphorous	48
4.4.3. Soil available Potassium	50
CHAPTER FIVE	51
5.0 SALIENT FINDINGS AND CONCLUSION	51
5.1. SALIENT FINDINGS	51
5.2. CONCLUSION	52
SUGGESTIONS FOR FURTHER STUDIES	53
REFERENCES	54
APPENDIX 01	
APPENDIX 02	

5

2

vi

.