EVALUVATION OF THE EFFICIENCY OF CONSTRUCTED WETLAND AND ACTIVATED CHARCOAL FOR THE TREATMENT OF

SLAUGHTERHOUSE WASTEWATER

1

KEERTHANA KETHEESWARAN

DEPARTMENT OF AGRICULTURAL ENGINEERING

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2017

ABSTRACT

Water quality has become a burning issue as best quality water is needed for daily lives. Wastewater from slaughterhouses and meet processing industries has been classified by EPA as the most harmful to the environment. There are several slaughterhouses functioning at Batticaloa District and a huge amount of effluent is generated and discharged openly as raw wastewater on surrounding environment. It pollutes the surface water and soil as well. Therefore, there is a need to treat slaughterhouse wastewater before discharging into water bodies to avoid environmental pollution and human health effects. Even though there are several techniques available for treating this wastewater, suitability and cost for the specific places are questionable. In this context, this study was mainly focused to design, construct and evaluate the efficiency of constructed wetland and activated charcoal treatments for slaughterhouse wastewater on the parameters of chemical oxygen demand (COD), total dissolved solid (TDS), total suspended solid (TSS), nitrate, phosphate, biological oxygen demand (BOD) and pH. Wastewater samples were collected from Eravur slaughterhouse and above mentioned paramèters were measured immediately after collection. The samples from both treatments were collected at 3rd, 6th and 9th day to measure the abovementioned parameters.

The results revealed that the activated carbon and constructed wetland were significantly different in their efficacy on the treatment of slaughterhouse wastewater. It was observed that by increasing the retention time of treatment, the removal efficiency of both treatments can also be increased. The maximum removal of COD, TSS, TDS, BOD₅, nitrate and phosphate with constructed wetland were 77.5%, 88.7%, 71.3%, 93.3%, 68% and 85.8% respectively while an activated charcoal reduced COD,

2

i

TSS, TDS, BOD₅, nitrate and phosphate as 74.8%, 92.5%, 79.9%, 92.6%, 47.4% and 67% respectively. This study ensured that constructed wetland was found to more efficient than activated charcoal on the removal of COD, phosphate, BOD₅ and nitrate but higher removal efficiency of TDS was observed in activated charcoal. However, the TSS removal efficiency for both treatments was same. Finally, it is concluded that the constructed wetland has better performance than that of activated charcoal for the treatment of slaughterhouse wastewater with the special reference to nitrate, phosphate, BOD and COD. However, activated charcoal show better performance especially for the removal of dissolved solids.

5

24

TABLE OF CONTENTS

ABSTRACTi
ACKNOWLEDGEMENTiii
TABLE OF CONTENTS iv
LIST OF FIGURES
LIST OF TABLES
ABBREVIATIONSix
CHAPTER 1
INTRODUCTION
1.1 Background information and significant1
1.2 Justification
1.3 Objectives of the study
CHAPTER 2
LITERATURE REVIEW
2.1 Wastewater
2.1.1 Slaughterhouse wastewater (SWW)
2.1.2 Composition of wastewater
2.1.2.1 Phosphorus and nitrogen
2.1.2.2 Dissolved oxygen
2.1.2.3 Pathogens
2.1.2.4 Organic matter (substances)
2.1.2.5 Total suspended solids
2.1.2.6 Heavy metals
2.1.2.7 Colour and turbidity
2.2 Wastewater treatment methods
2.2.1 Preliminary treatment
2.2.2 Primary treatment
2.2.3 Secondary treatment
2.2.4 Tertiary treatment
2.3 Constructed wetland
2.3.1 Constructed wetland in wastewater treatment
2.3.2 Classification of constructed wetlands
2.3.2.1 Horizontal flow wetland

2.3.2.2 Vertical flow wetland	13
2.3.2.3 Hybrid wetland	14
2.3.3 Classification of aquatic plants	14
2.3.3.1 Emergent plants	15
2.3.3.2 Floating-leaved plants	16
2.3.3.3 Submerged plants	16
2.3.4 Water balance for a constructed wetland	17
2.4 Activated carbon	17
2.4.1 Key properties of activated carbon	19
2.4.2 Surface area	19
2.4.2.1 Total pore volume	19
2.4.2.2 Pore Radius	19
2.4.2.3 Pore volume distribution	19
2.4.3 Adsorptive properties of activated carbon	20
2.4.4 Adsorption capacity of activated carbon	20
2.4.5 Coconut shell activated carbon	21
2.5 Regulations for wastewater discharge in Sri Lanka	22
CHAPTER 3	23
MATERIALS AND METHODOLOGY	23
3.1 Experimental site	23
3.2 Experimental design and treatment	23
2.3 Sample collection	23
2.4 Method – 01 (Vertical flow constructed wetland)	23
2.5 Method-02 (Activated charcoal filter)	24
2.5.1 Effluent analysis	25
2.5.1.1 pH	25
2.5.1.2 Total suspended solids	25
2.5.1.3 Total dissolved solids	25
2.5.1.4 Chemical oxygen demand	
2.5.1.5 Biological oxygen demand	26
2.5.1.6 Phosphate	27
2.5.1.7 Nitrate	27
2.5.1.8 Data analysis	27