EFFECT OF DIFFERENT TYPES OF STABILIZER USE IN YOGHURT PRODUCTION

E. S. D. MAITRIRATNA

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2017

ABSTRACT

This study was conducted to investigate nutritional, physical and sensorial properties of different stabilizer added to yoghurt at milk processing unit of Department of Animal Science, Eastern University, Sri Lanka 2017. This experiment was designed as Complete Randomized Design and consisted of five treatments and three replications. Different types of stabilizers were added to the yoghurt such as gelatin, sweet potato, cassava, citrus fiber and corn.

Selected parameters were analyzed as chemical, physical and sensory basis. At day one, it was found that quality attributes such as dry matter, ash and titratable acidity were not sifnificantly (p > 0.05) different among the types of yoghurt samples and Fat, Reducing sugar, Total sugar and pH were significantly (p < 0.05) different among the types of yoghurt samples. Syneresis was high after half an hour and two hours was corn stabilizer treatment. Which showed the highest values (26.91 ± 0.02), (39.92 ± 0.05), respectively. Gelatin stabilizer added yoghurt showed lowest value (25.20 ± 0.10), (35 ± 0.10), respectively. During the storage period, dry matter, ash content, total sugar, reducing sugar, pH, and titratable acidity significantly (p < 0.05) different between the yoghurt samples. In case of fat, slight changes were observed. During the storage period there was no significant difference in fat content among treatments. At the end of the storage period corn stabilizer added yoghurt showed highest value of dry matter content (23.56 ± 0.12) and sweet potato stabilizer added yoghurt showed lowest value of dry matter content (18.4 ± 0.18). At the end of the storage period corn stabilizer added yoghurt showed lowest value of dry matter content (18.4 ± 0.18). At the end

(0.80±0.00) and Corn starch added yoghurt and sweet potato starch added yoghurt showed lowest value of Ash content (0.66±0.28) (0.66±0.14), Respectively. During the storage period corn stabilizer added yoghurt showed lowest value of reducing sugar content (2.05±0.04) than other treatments. During the storage period gelatin stabilizer added yoghurt showed lowest value of total sugar content (16.49±0.05) than other treatments. During the storage period citrus fiber stabilizer added yoghurt showed lowest value of pH (4.17±0.03) than other treatments. Titratable acidity of the treatments was increased with storage period. During the storage period citrus fiber stabilizer added yoghurt showed highest value of Titratable acidity (0.78±0.05).

The results of the sensory evaluation showed that organoleptic parameters had influence on overall acceptability of yogurt product. According to the panelist preference of texture colour flavour and overall acceptability they preferred citrus fiber stabilizer added yoghurt.

TABLE OF CONTENTS

	Page No
ABSTRACT	
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
ABBREVIATIONS	
CHAPTER 1	
1.0 INTRODUCTION	
CHAPTER 2	
2.0 LITERATURE REVIEW	
2.1 Milk	
2.1.1 Milk composition	
2.1.1.1 Water	
, 2.1.1.2 Lipids	
2.1.1.3 Lactose	
2.1.1.4 Proteins	
2.1.1.5 Casein	
2.1.1.6 Whey proteins	
2.1.1.6.1 β-Lacto globulin whey protein	
2.1.1.6.2 α-Lactalbumin whey protein	10
2.1.1.7 Enzymes	10
2.1.1.8 Minerals and vitamins	10

	2.1.2 Forms of milk products	12
	2.1.3 Coagulation	12
	2.1.3.1 Acid induced coagulation	12
	2.1.3.2 Enzyme induced coagulation	13
	2.1.4 Milk Fermentation	13
	2.1.5 Fermented milk Products	14
	2.1.6 Benefits of milk.	. 15
2	.2 Yoghurt	. 15
	2.2.1 What is Yoghurt?	. 15
	2.2.2 Histry of yoghurt	. 16
	2.2.3 Different Types of Yoghurt	. 16
	2.2.3.1 Set Yoghurt	. 17
	2.2.3.2 Stirred Yoghurt	17
	2.2.3.3 Drinking Yoghurt	17
t	2.2.3.4 Frozen Yoghurt	17
	2.2.3.5 Concentrated Yoghurt	17
	2.2.3.5 Flavoured Yoghurt	17
	2.2.4 Classification of Yoghurt*	18
	2.2.5 Important Ingredient of Yoghurt	18
	2.2.5.1 Cow milk	18
	2.2.5.2 Sugar	19
	2.2.5.3 Stabilizers / Emulsifiers	19
	2.2.5.4 Starter culture	19

2.2.5.5 Flavour	20
2.2.5.6 Colouring agent	20
2.2.6 Basic Principle of Yoghurt	20
2.2.7 Requirement for high quality yoghurt	21
2.2.8 Effects on Health of yoghurt	21
2.2.9 Composition of Yogurt	22
2.2.9.1 Total Solids Content	23
2.2.9.2 Carbohydrates	23
2.2.9.3 Lactic Acid	24
2.2.9.4 Protein	24
2.2.9.5 Fat	24
2.2.9.6 Vitamins and Minerals	25
2.2.10 Hedonic rating test	27
2.2.11 Microbial activity in yoghurt	27
2.3 Stabilizer	27
2.3.1 Stabilizer	27
2.3.2 Problems of stabilizers	28
2.3.3 Types of Stabilizers	29
2.3.4 Common stabilizer for yoghurt and yoghurt drink	30
2.3.4.1 Starch	30
2.3.4.1.1 Different starch sources	31
2.3.4.2 Gelatin	31
2.3.4.2.1 Properties of gelatin	32

2.3.4.3 Pectin	33
2.3.4.3.1Types of pectin	33
2.3.4.3.2 High methoxy pectins,	34
2.3.4.4 Carboxymethylcellulose (CMC)	34
2.3.5 The science of gelation and Syneresis in yoghurt	35
CHAPTER 3	37
3.0 MATERIALS AND METHODS	37
3.1 Location and study area	37
3.2 Collection of Milk	37
3.3 Mother culture preparation	37
3.4 stabilizers preparation for yoghurt	37
3.4.1 Incorporation of Stabilizers	38
3.5 Treatment plan	38
3.6 Preparation of Yogurt	38
3.7 Analysis of yoghurt	40
3.7.1 Syneresis	40
3.7.2 Determination of ash content	40
3.7.3 Determination of dry matter content of yoghurt	41
3.7.4 Determination of titratable acidity of yoghurt	
3.7.5 Determination of pH	42
3.7.6 Determination of fat content	
3.7.7 Determination of total sugar	42
3.7.8 Determination of reducing sugar	43

3.8 Sensory analysis
3.9 Statistical analysis
CHAPTHER 4
4.0 Result and Discussion
4.1 Milk composition
4.2 Nutritional attributes of yoghurts made from different types of stabilizers at day one.
4.3 Syneresis of yoghurt
4.4 Changes in compositions of yoghurt during storage period
4.4.1 Dry matter content and Ash content in yoghurt during storage period 50
4.4.3 Fat content in yoghurt during storage period
4.4.3 Reducing sugar and Total sugar in yoghurt during storage period
4.4.4. pH and titratable acidity in yoghurt during storage
4.5 Effect of storage on sensorial attributes of different treated yoghurt samples 60
4.6.1 Organoleptic evaluation of produced yoghurt
4.6.2 Changes in sensory attributes at day one62
4.6.3 Sensory attributes during first week of storage
4.6.4 Sensory attributes during second week of storage
4.6.5 Sensory attributes during third week of storage
4.6.6 Sensory attributes during fourth week of storage
CHAPTER 567
CONCLUSION67
SUCCESTIONS FOR FUTURE RESEARCH 60