EFFECT OF DIFFERENT CONCENTRATIONS OF DIFFERENT LIQUID FERTILIZERS ON ACCLIMATIZATION OF WEAKLY GROWN IN VITRO PLANTLETS OF ANTHURIUM (Anthurium andraeanum L.). var. 'Lalani'

BY 17 OCT 2018 TO THE STATE OF THE STATE OF

P.G.S.A. KUMARASINGHE

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2018

ABSTRACT

An experiment was conducted to evaluate the effects of different concentrations of different liquid fertilizers on the acclimatization of weakly grown in vitro Anthurium plantlets at the Royal Botanic Gardens, Peradeniya from June to August 2018. Treatments were defined as T1 (1.11g/L Albert's solution applied as 1st application and 0.55g/L Albert's solution applied as 2nd application), T2 (1.11g/L Albert's solution applied in both application), T3 (0.55g/L Albert's solution applied in both application), T4 (0.625g/L N:P:K (30:10:10) solution applied as 1st application and 0.3125g/L N:P:K (30:10:10) solution applied as 2nd application), T5 (0.625g/L N:P:K (30:10:10) solution applied in both application), T6 (0.3125g/L N:P:K (30:10:10) solution applied in both application), T7 (1.333g/L N:P:K (20:20:20) solution applied as 1st application and 0.666g/L N:P:K (20:20:20) solution applied as 2nd application), T8 (1.333g/L N:P:K (20:20:20) solution applied in both application), T9 (0.666g/L N:P:K (20:20:20) solution applied in both application), T10 - Sterile water (control). First application was done at the time of transplanting and second application was done two weeks after transplanting. The experimental design was Completely Randomized Design with ten replicates for each treatment. Other agronomic practices were followed uniformly for all the treatments. Plant height, Number of roots, Number of leaves and Length of petiole were measured at four weeks after transplanting. Analysis of Variance was performed to determine significant difference among treatments (p < 0.05). Results revealed that better growth performances viz. increase in plant height, leaf number and roots number and length of petiole were observed in plantlets grown at T2. It could be due to optimum

TABLE OF CONTENTS

ABSTRACT	I
ACKNOWLEDGEMENT	III
TABLE OF CONTENTS	V
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF PLATES	XI
LIST OF ABBREVIATIONS	XII
CHAPTER 1	1
1.0 INTRODUCTION	1
CHAPTER 2	6
2.0 LITERATURE REVIEW	6
2.1 Floriculture	6
2.1.1 Global floriculture industry	7
2.1.2 Floriculture industry in Sri Lanka	8
2.1.3 Types of plants produced in Sri Lanka	9
2.1.4 Constraints of floriculture industry in Sri Lanka	10
2.2 Cut flowers	11

2.3 Study plant	12
2.3.1 General description of Anthurium	12
2.3.2 Classification of study plant	13
2.3.3 Morphology and growth of Anthurium	14
2.4 Anthurium Cultivation	15
2.4.1 Present status in the world	15
2.4.2 Present status in Sri Lanka	16
2.4.3 Economic importance of Anthurium.	18
2.5 Recommended Varieties	20
2.5.1 Characteristic features of var. Lalani	20
2.6 Anthurium propagation	21
2.6.1 Sexual propagation	21
2.6.2 Vegetative propagation	22
2.6.3 Disadvantages of sexual and vegetative propagation of Anthurium	22
2.6.4 Propagation via tissue culture	23
2.6.4.1 Problems in <i>in-vitro</i> plants	25
2.6.4.1.1 Slow Growth and Other Effects of <i>in-vitro</i> Plants	25
2.6.4.1.2 Acclimatization of <i>in vitro</i> plantlets	25
2.7 Effect of nutrient (N, P, and K) on ornamental crops	26
2.7.1 Effects of Albert's solution	28

2.7.2 Effects of N: P: K (30:10:10)	28
2.7.3 Effects of N: P: K (20:20:20)	29
2.8 Summary	30
CHAPTER 3	31
3.0 MATERIALS AND METHODS	31
3.1 Experimental Site description	31
3.2 Experimental design	31
3.3 Agronomic practices	34
3.3.1 Description of the glass house	34
3.3.2 Preparation of pots & potting media	35
3.3.3 Planting materials	37
3.3.4 Preparation of Albert's solution	38
3.3.5 Preparation of N: P: K: (30:10:10)	38
3.3.6 Preparation of N: P: K (20:20:20)	39
3.3.7 Application of liquid fertilizer solutions	39
3.4 Measurements.	39
3.4.1 Plant height (cm)	40
3.4.2 No of roots per plant (Nos.)	40
3.4.3 No of leaves per plant (Nos.)	41

3.4.4 Length of the petiole (mm)	41
3.5 Statistical analysis	41
CHAPTER 4	42
4.0 RESULT AND DISCUSSION	42
4.1 Plant Height	42
4.2 Number of Roots	46
4.3 Number of leaves	50
4.4 Length of Petiole	54
CHAPTER 5	58
5.0 CONCLUSIONS	58
6.0 SUGGESSTIONS FOR THE FUTURE STUDIES	59
,	
DEFENDATOR	