PERMANENT REFERENCE

GROWTH AND HYDRAULIC CHARACTERISTICS OF TWO TROPICAL DECIDUOUS SEEDLINGS SUBJECTED TO DIFFERENT WATER SUPPLY

BY

GANGA DEVI SINNIAH

bart appendix

DEPARTMENT OF BOTANY FACULTY OF SCIENCE EASTERN UNIVERSITY, SRI LANKA

CHENKALADY

Abstract

Growth and above ground plant hydraulic characteristics were assessed on 9 months old potted seedlings of Terminalia arjuna and Berrya cordifolia. The seedlings were subjected to high and low watering treatments. Leaf water potentials (ψ_{Leaf}) were measured using a pressure chamber. Whole plant shoot hydraulic conductivity (kmax), leaf specific hydraulic conductivity (k_i) , xylem specific hydraulic conductivity (k_s) and hydraulic conductivity per unit shoot dry mass ($k_{max}/TSDM$) were assessed using Low pressure flow meter (LPFM). The midday embolism was quantified as the percentage loss in hydraulic conductivity (PLC). Vessel diameter at the distal end of the shoot stem was also measured. Plant growth parameters were investigated in terms of height, diameter, leaf area and plant dry mass. Measured predawn ψ_{Leaf} (equivalent to soil ψ) and midday ψ_{Leaf} were insignificant between treatments. But genus effect was significant where T. arjuna operated at low xylem water potential than B. cordifolia. Higher plant growth and dry mass accumulation were observed in high watered seedlings than low watered seedlings. The genus effect on growth parameters were significant with T. arjuna which invested more dry mass than B. cordifolia. Hydraulic parameters significantly differed between treatments and genus. However, significant reduction in hydraulic conductivities such as kmax, k1 and ks and increased PLC were observed in T. arjuna, subjected to low watering treatment. Established relationship between hydraulic parameters (kmax and ks) and vessel diameter indicated increases in hydraulic conductivities strongly associated with increase in vessel diameter. The strong relationship between k1 and shoot dry mass supports hydraulic limitation hypothesis that increase of k_1 sufficiency decreases water stress and supports growth.

Contents	
	Page No
Abstract	i
Acknowledgements	ii
Contents	iii
Abbreviations	vi
List of tables	viii
List of figures	ix
List of plates	x
Charten 1 February 1 Film	
Chapter 1 Introduction and Literature review	
1.1 Water deficit and drought responses of plants	1
1.2 Ohm's law analogy of plants	3
1.3 Parameters and concepts to describe hydraulic architecture	4
1.3.1 Hydraulic conductivity	4
1.3.2 Specific conductivity	4
1.3.3 Leaf specific conductivity	4
1.3.4 Huber value	4
1.3.5 Water storage capacitance	5
1.4 Nature of water conducting tissue	5
1.4.1 Xylem anatomy	5
1.4.2 Relationship between hydraulic parameters and xylem structure	6
1.5 Techniques to quantify hydraulic characteristics and xylem embolism	7
1.5.1 Low pressure flow meter	7
1.5.2 High pressure flow meter	8
1.5.3 Evaporative flux method	9
1.6 Vulnerability to xylem cavitation	9
1.7 Hydraulic architecture in woody plants	12
1.7.1 Hydraulic architecture in Angiosperms and Conifers	12
1.7.2 Distribution of plant hydraulic resistance	13
1.8 Hydraulic limitation hypothesis: Relationship between leaf physiology	
and hydraulic characteristics	14

111

1.9 Relationship between hydraulic conductance and growth	16
Present research	17
Objectives	17
Chapter 2 Materials and Methodology	
2.1 Plant materials and study site	18
2.2 Imposing watering treatments	19
2.3 Plant water status	21
2.3.1 Leaf water potential	21
2.3.2 Predawn and midday leaf water potential	21
2.3.3 Diurnal leaf water potential	22
2.4 Measurements of hydraulic properties	22
2.4.1 Collection of plant materials and hydraulic conductivity	
measurements	23
2.4.2 Hydraulic conductivity apparatus	24
2.4.3 Quantification of embolism	25
2.5 Growth parameters	27
2.5.1 Leaf area	27
2.5.2 Sapwood area	27
2.5.3 Vessel diameter	28
2.5.4 Height and stem over bark diameter	28
2.5.5 Dry mass	28
2.6 Statistical analysis	29
Chapter 3 Results	
3.1 Growth parameters	30
3.1.1 Height	30
3.1.2 Stem over bark diameter	31
3.1.3 Leaf area	32
3.1.4 Sapwood area	33
3.1.5 Dry mass allocation	33
3.1.6 Specific leaf area	35
3.1.7 Leaf area ratio	35
3.1.8 Leaf weight ratio	36

iv

4	
3.1.9 Leaf area/ Root dry mass	36
3.2 Plant water status	36
3.2.1 Leaf water potential: Predawn and Midday	36
3.2.2 Diurnal leaf water potential	37
3.3 Preliminary investigation of stem xylem architecture: vessel diameter	38
3.4 Hydraulic properties	39
3.4.1 Maximum hydraulic conductivity	39
3.4.2 Percentage loss in hydraulic conductivity	39
3.4.3 Leaf specific hydraulic conductivity and specific hydraulic	
conductivity	41
3.4.5 Maximum hydraulic conductivity normalized by shoot dry mass	42
3.4.6 Huber value	42
3.5 Relationship between vessel diameter and maximum hydraulic conductivity	
and specific hydraulic conductivity	43
3.6 Relationship between leaf specific hydraulic conductivity and dry mass	44
Chapter 4 Discussion	
4.1 Plant growth	47
4.2 Leaf water status	51
4.3 Plant hydraulic characteristics	52
4.4 Relationship between leaf specific hydraulic conductivity	
and carbon assimilation	58
References	

JÈ.

ŧ

No.

. . . ŝ

Plates

4