

Ab initio QUANTUM CHEMICAL INVESTIGATION ON THE GEOMETRICAL ISOMERS OF DINITROGENTETRAOXIDE

501, 40 5A1 28 (98)

BY

THAMOTHARAMPILLAI SASIKARAN

SUPERVISOR

DR.W.S.J.SILVA

46035

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
EASTERN UNIVERSITY, SRILANKA

ABSTRACT

Many people worked and given more details about Dinitrogentetraoxide (N_2O_4). But the geometry of N_2O_4 is still subjected to discussion.

There are many methods available, but the theoretical *Ab initio* Quantum chemical calculation is very suitable. It is very accurate with experimental values, but a time consuming method. Because it takes considerable amount of CPU time in computation.

In this study we used some experimental values, from these values the equilibrium geometry and its structural parameters were found by using computation. Total energies of the each isomer were also found.

These calculated values were correlated with experimental values and a possible geometry of the N_2O_4 was determined.

CONTENTS

DECLARATION	iii
ACKNOWLEDGEMENT	v
ABBRIVIATIONS	vii
LIST OF TABLES	viii
LIST OF FIGURES	ix
ABSTRACT	xi
CHAPTER 01	
1 INTRODUCTION	
1.1 PREPARATION OF N ₂ O ₄	01
1.2 PROPERTIES OF N ₂ O ₄	02
1.2.1 Physical properties of N ₂ Q ₄	03
1.2.2 Chemical properties of N ₂ O ₄	04
1.3 STRUCTURE OF N ₂ O ₄	05
1.4 OBJECTIVE OF STUDY	06
1.5 QUANTUM CHEMICAL CALCULATION	06
1.5.1 Hamiltonian operator for many electron system	06
1.5.2 Born Oppenheimer approximation	07
1.5.3 Orbital approximation	08
1.5.4 Many electron wave function	08

1.5.5 Hartree Fock self consistent field method	09
1.6 COPUTATIONAL CHEMISTRY	11
CHAPTER 02	
2. COMPUTATIONAL METHOD	12
2.1 Ab initio METHOD	12
2.2 GAMESS PROGRAM	15
2.3 CALCULATION OF ENERGY	15
CHAPTER 03	
3. RESULTS AND DISCUSSION	
3.1 STRUCTURAL PARAMETER OF N ₂ O ₄ FOR ISOMER A,B,C AND D	16
3.1.1 Structural parameter of N ₂ O ₄ for isomer A	16
3.1.2 Structural parameter of N ₂ O ₄ for isomer B	17
3.1.3 Structural parameter of N ₂ O ₄ for isomer C	18
3.1.4 Structural parameter of N ₂ O ₄ for isomer D	19
3.2 GEOMETRIES OF N ₂ O ₄ ACCORDING TO THE CALCULATED VALUES	20
3.3 PROPERTIES OF N ₂ O ₄ FOR ISOMERS A,B,C AND D	22
3.3.1 Bond order	22
3.3.2 Other properties	23
3.4 TOTAL ENERGY FOR ISOMERS OF N ₂ O ₄	27

3.5 CHARACTER OF HOMO AND LUMO	28
3.6 MOLECULAR ORBITAL ENERGY LEVELS OF N ₂ O ₄ FOR ISOMERS	
A,B,C AND D	37
CHAPTER 04	
4. SUMMERY	40
REFERENCE	41
APPENDICES	43