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Exact anisotropic sphere with polytropic equation of state
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Abstract. We study static spherically symmetric spacetime to describe compact objects with
anisotropic matter distribution. We express the system of Einstein field equations as a new system
of differential equations using a coordinate transformation, and then write the system in another
form with polytropic equation of state and obtain two classes of exact models. The models sat-
isfy all major physical features expected in a realistic star. For polytropic index n = 2, we
obtain expressions for mass and density which are comparable with the reported experimental
observations.

Keywords. Einstein field equations; anisotropic matter; polytropic equation of state; relativistic
star.

PACS Nos 04.20.−q; 04.20.Jb; 04.40.Nr

1. Introduction

The description of compact astrophysical objects has been a central issue in relativis-
tic astrophysics for the past decades. Recent experimental observations of radio timing
measurements such as a strong Shapiro delay signature in the binary millisecond pul-
sar J1614-2230 [1] and three post-Keplerian effects in the binary pulsar J1903+0327
[2] suggest that there are compact objects, whose estimated masses ∼ (1.5–2) times the
solar-mass and radii of ∼ (10–15) km give density values that exceed by far the ground
state density of atomic nuclei, ρ0 ∼ 0.16 nucleons/fm3 (∼ 2.5 × 1014 g cm−3). These
experimental results with many others [3,4] suggest that these pulsar-like stars could be
quark stars [5], and are not compatible with the standard neutron star models and rules
out some equations of state for superdense matter. Hence there is an increasing challenge
for theorists to develop better models to explain the so-called hybrid stars or strange stars
that contain quarks in the core either as pure quark matter or as a quark–hadron mixed
phase bound by strong interaction, with very different properties from those predicted for
hadronic neutron stars [6]. Written [7] was the first to propose that strange quark matter
made of up-, down- and strange-quarks is absolutely stable and forms the true ground
state of hadronic matter. Strange stars are expected to form during the collapse of the
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core of a massive star after the supernova explosion. Another possibility is that a rapidly
spinning neutron star can accrete sufficient mass to undergo a phase transition to become
a strange star.

The description of gravitational collapse and evolution of compact objects under var-
ious conditions remain among the important problems of general relativity. The physics
of very high density matter is not yet very clear and many of the strange star studies have
been performed within the framework of the bag model [8–11]. In the MIT bag model
[12], it is assumed that the quark confinement is caused by a universal pressure B on the
surface of any region containing quarks and the strange matter equation of state has a sim-
ple linear form given by p = 1/3(ρ − 4B) [7], where ρ is the density, p is the isotropic
pressure and B is the bag constant. However, the above-stated experimental evidences
show that densities within such stars are beyond nuclear matter density, and hence one
expects anisotropy to play a major role in theoretically treating such dense objects. Dif-
ferent mechanisms have been identified through the years that create pressure anisotropy
in stellar models and make the fluid imperfect [13]. The exotic phase transitions during
gravitational collapse [14,15], the existence of a solid core or the presence of a type-P
superfluid [16], strong electromagnetic fields [17–19], viscosity [20] as well as the slow
rotation of a fluid [21] are some of the mechanisms. In such systems the radial pres-
sure is not equal to tangential pressure. There have been extensive theoretical studies on
relativistic compact objects with charged [22–24] and uncharged [25,26] anisotropic mat-
ter within the framework of MIT bag model. Study of uncharged anisotropic matter by
Sharma and Maharaj [25] shows that for particular parameter values the central density
and mass are consistent with that obtained by Dey et al [4], who described the quark inter-
action in a strange star by an interquark vector potential originating from gluon exchange
and a density-dependent scalar potential which restores chiral symmetry at high density.
In addition to the extensive treatment with linear equation of state, some work has been
reported with non-linear equation of state by Varela et al [27] and Feroze and Siddiqui
[28] on anisotropic matter in the presence of electromagnetic field. Moreover, polytropic
model with equation of state, p = kργ which was previously studied under the Newto-
nian gravity [29] and then later extended under general relativity [30], is considered to be
stiffer than the conventional bag model, but regarded to be valuable because it could help
modelling stars composed of realistic matter, such as ideal gas, photon gas, degenerate
Fermi gas and in particular quark matter. Interesting suggestions that quark matter could
be in solid form [31], infers that if quarks are clustered in such strange stars where quarks
are coupled strongly, the state of cold quark matter might be approximated phenomeno-
logically by polytropic equations of state, which is regarded as an extension to the quark
star models with linear equation of state.

Substantial analytical difficulties are associated when polytropic treatment is done for
self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter
density, which invariably leads to non-integrable equations [32]. However, our treatment
of anisotropic fluids with polytropic equation of state gets some flexibility in solving the
Einstein field equations with uncharged matter in static spherically symmetric spacetime.
In §2, we express the system of Einstein field equations as a new system of differential
equations using a coordinate transformation, and then write the system in another form
with polytropic equation of state which is easier to analyse. Two classes of new exact
solutions to the Einstein system are found in §3 in terms of simple elementary functions.
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In §4, we impose the physical conditions that must satisfy a physically reasonable model
and confirms that the exact solutions found are physically admissible. Some concluding
remarks are given in §5.

2. The field equations

We assume that the spacetime manifold is static and spherically symmetric. This assump-
tion is consistent with models used for studying physical behaviours in relativistic
astrophysical objects such as dense stars. Consequently, the interior of a spherically
symmetric static star is described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). We take the energy–momentum tensor
for an anisotropic neutral imperfect fluid sphere to be of the form

Ti j = diag(−ρ, pr, pt, pt) , (2)

where ρ is the energy density, pr is the radial pressure and pt is the tangential pressure.
These quantities are measured relative to the co-moving fluid 4-velocity ui = e−νδi

0.

For the line element (1) and matter distribution (2) the Einstein field equations can be
expressed as

1

r2

[
r(1 − e−2λ)

]′ = ρ, (3)

− 1

r2

(
1 − e−2λ

) + 2ν ′

r
e−2λ = pr, (4)

e−2λ

(
ν ′′ + ν ′2 + ν ′

r
− ν ′λ′ − λ′

r

)
= pt, (5)

where primes denote differentiation with respect to r . In the field equations (3)–(5), we
are using units where the coupling constant (8πG/c4) = 1 and the speed of light c = 1.
The system of equations (3)–(5) governs the behaviour of the gravitational field for an
anisotropic imperfect fluid.

The mass contained within a radius r of the sphere is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

A different but equivalent form of the field equations can be found if we introduce the
transformation

x = Cr2, Z(x) = e−2λ(r), A2 y2(x) = e2ν(r). (7)

In (7), the quantities A and C are arbitrary constants. This transformation was first sug-
gested by Durgapal and Bannerji [33]. Under the transformation (7), the system (3)–(5)
becomes

1 − Z

x
− 2Ż = ρ

C
, (8)

4Z
ẏ

y
+ Z − 1

x
= pr

C
, (9)

4x Z
ÿ

y
+ (4Z + 2x Ż)

ẏ

y
+ Ż = pt

C
, (10)
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where dots denote differentiation with respect to the variable x . The mass function (6)
becomes

m(x) = 1

4C3/2

∫ x

0

√
wρ(w)dw (11)

in terms of the new variables in (7).
For a physically realistic relativistic star we expect that the matter distribution should

satisfy a barotropic equation of state pr = pr(ρ): in this paper we assume the polytropic
equation of state

pr = kρ1+(1/n), (12)

where k is a real constant and n is the polytropic index. Then it is possible to write system
(8)–(10) in the simpler form

ρ

C
= 1 − Z

x
− 2Ż , (13)

pr = kρ1+(1/n), (14)

pt = pr + �, (15)

�

C
= 4x Z

ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
, (16)

ẏ

y
= kC1/n

4Z

[
1 − Z

x
− 2Ż

]1+(1/n)

+ 1 − Z

4x Z
, (17)

where the quantity � = pt − pr is the measure of anisotropy in this model. This system
of equations governs the behaviour of the gravitational field for an imperfect fluid source.

3. Exact models

In the system (13)–(17), there are six independent variables (ρ, pr, pt,�, y, Z) and only
five independent equations. This suggests that it is possible to specify one of the quantities
involved in the integration process. The resultant system will remain highly nonlinear but
it may be possible to generate exact solutions. Equation (17) is the master equation in the
integration process. In this treatment we specify the gravitational potential Z so that it
is possible to integrate (17). The explicit solution of the Einstein system (13)–(17) then
follows. We make a particular choice

Z = (1 − ax)2, (18)

where a is a real constant. The gravitational potential Z is regular at the origin and well
behaved in the stellar interior for a wide range of values for the parameters a. Similar
form of gravitational potential were previously used to study a charged perfect fluid source
[34]. Therefore, the forms chosen in (18) is physically reasonable. By substituting (18)
into (17) we obtain

ẏ

y
= a(2 − ax)

4(1 − ax)2
+ a1+(1/n)C1/nk(6 − 5ax)1+(1/n)

4(1 − ax)2
. (19)

In principle, eq. (19) can be integrated if the values of n is specified. We shall consider
the following two cases of physical interest.
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3.1 The case n = 1

When n = 1, eq. (19) becomes

ẏ

y
= a(2 − ax)

4(1 − ax)2
+ a2Ck(6 − 5ax)2

4(1 − ax)2
. (20)

On integrating (20) we obtain

y = d1(1 − ax)−(1+10aCk)/4 exp

[
1 + aCk

(
1 − 25(1 − ax)2

)

4(1 − ax)

]

, (21)

where d1 is the constant of integration. Hence an exact model for the system (13)–(17) is
as follows:

e2λ = 1

(1 − ax)2
, (22)

e2ν = A2d2
1 (1 − ax)−(1+10aCk)/2 exp

[
1 + aCk

(
1 − 25(1 − ax)2

)

2(1 − ax)

]

, (23)

ρ = aC(6 − 5ax), (24)

pr = kρ2, (25)

pt = pr + �, (26)

� = a2Cx(6−ax)

4(1−ax)2

× {
2 − a

[
x − Ck

(
8 + a[Ck(6 − 5ax)3 + 2x(2 − 5ax)])]} . (27)

The solutions (22)–(27) are given in simple elementary function so that it may be used to
model an anisotropic star with quadratic equation of state.

3.2 The case n = 2

When n = 2, eq. (19) becomes

ẏ

y
= a(2 − ax)

4(1 − ax)2
+

√
Cka3/2(6 − 5ax)3/2

4(1 − ax)2
. (28)

On integrating (28) we obtain

y = d2
1

(1 − ax)1/4

[√
6 − 5ax + 1√
6 − 5ax − 1

]15k
√

aC/8

× exp

[
1 − k

√
aC(6 − 5ax)(9 − 10ax)

4(1 − ax)

]
, (29)
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where d2 is the constant of integration. Hence an exact model for the system (13)–(17) is
as follows:

e2λ = 1

(1 − ax)2
, (30)

e2ν = A2d2
2

1

(1 − ax)1/2

[√
6 − 5ax + 1√
6 − 5ax − 1

]15k
√

aC/4

× exp

[
1 − k

√
aC(6 − 5ax)(9 − 10ax)

2(1 − ax)

]
, (31)

ρ = aC(6 − 5ax), (32)

pr = kρ3/2, (33)

pt = pr + �, (34)

� = a2Cx

4(1−ax)2

[
12+5a2x2+8a(27Ck2−2x) +2

√
aCk

√
6−5ax(9−8ax)

−5a2Ck2x(108 − 90ax + 25a2x2)
]
. (35)

The solutions (30)–(35) also are given in simple elementary function so that it may be
used to model a polytropic star.

For both cases the mass function takes the form

m(x) = ax3/2(2 − ax)

2
√

C
. (36)

4. Physical analysis

In this section, we show that the models generated satisfy the physical properties that
should be satisfied by a realistic star [35]. The physical properties are:

(i) regularity of the gravitational potentials at the origin;
(ii) positive definiteness of the energy density and the radial pressure at the origin;

(iii) vanishing of the pressure at some finite radius;
(iv) monotonic decrease of the energy density and the radial pressure with increasing

radius.
(v) the interior metric match smoothly with the Schwarzschild exterior metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

across the boundary r = R, where M is the total mass of the sphere.

4.1 Physical analysis for the case n = 1

(i) In this model e2ν(0) = A2d2
1 exp [ 1

2 − 12aCk], e2λ(0) =1 and (e2ν(r))′r=0 =(e2λ(r))′r=0 =
0. This shows that the gravitational potentials are regular at the origin.
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(ii) Since ρ(0) = 6aC and pr(0) = 36a2C2k, the energy density and radial pressure are
positive at the origin if a > 0.

(iii) At the boundary of the star r = R, the condition pr(r = R) = 0 implies R =√
6/5aC which is finite for a > 0.

(iv) Since dρ/dr = −10a2C2r < 0 for all 0 < r < R and dpr/dr = −20a3C3kr(6 −
5aCr2) < 0 for all 0 < r < R, the energy density ρ and the radial pressure decrease
monotonically from the centre to the boundary of the star r = R.

(v) From (36) we get

m(r) = 1

2
aCr3(2 − aCr2).

Therefore, the total mass of the star

M = m(R) = 12
√

6

25
√

5aC
.

Matching conditions imply that
(

1 − 2M

R

)−1

= 1

(1 − aC R2)2
, (37)

(
1 − 2M

R

)
= A2 y2(C R2). (38)

The condition (37) does not impose any restrictions on the parameters. However,
the condition (38) imposes restriction on the parameters a and d as

a = 4h − 1

10Ck
and d1 = ± e5/4

5(−5)h A
,

where h is an integer.

Thus this model satisfies the physical requirements of a realistic relativistic star in view
of general relativity theory.

4.2 Physical analysis for the case n = 2

(i) In this case e2ν(0) = A2d2
2 [ 1

5 (7 + 2
√

6)](15/4)k
√

aC exp [ 1
2 − 9

√
3
2

√
aCk], e2λ(0) = 1

and (e2ν(r))′ = (e2λ(r))′ = 0 at the origin r = 0. This shows that the gravitational
potentials are regular at the origin.

(ii) Since ρ(0) = 6aC and pr(0) = 6
√

6a3/2C3/2k, the energy density and radial
pressure are positive at the origin if a > 0.

(iii) At the boundary of the star r = R, the condition pr(r = R) = 0 implies R =√
6/5aC which is finite for a > 0.

(iv) Since dρ/dr = −10a2C2r < 0 for all 0 < r < R and dpr/dr =
−15a5/2C5/2kr

√
6−5aCr2 < 0 for all 0 < r < R, the energy density ρ and

the radial pressure decrease monotonically from the centre to the boundary of the
star r = R.
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(v) It is noted that the energy density and the radius of the star in both models are equal,
and hence the total mass of the star (M) remains the same:

M = m(R) = 12
√

6

25
√

5aC
.

In this case also, the condition (37) does not impose any restrictions on the param-
eters. However the condition (38) imposes restriction on the parameters a and
d as

a = 4(4h − 1)2

225Ck2
and d2 = ± (−1)he5/4

5 4
√

5A
.

where h is an integer.

It is noted that, generally, for polytropic models, the polytropic index n = 1.5–3 mark
the bounds of the most general range of values seen in real stars. A star could be unstable
due to strong gravity and hence high pressure (n < 3) is necessary for gravitational
stability [36]. The lower limit n = 1.5 may represent low-mass white dwarfs (< 1M�)

and main-sequence stars (< 0.5M�) [37]. Hence, a more detailed analytical discussion
for an intermediate value n = 2 would be appropriate.

Therefore, consider the square of sound speed which is

dpr

dρ
= 3k

2

√
aC(6 − 5ax) ≤ 3k

2

√
6aC =

√
6

5
|1 − 4h|

in the interior of the star. To maintain the usual casuality, i.e., as the speed of sound
being less than the speed of light throughout the interior of the star, we must impose the
condition

dpr

dρ
≤

√
6

5
|1 − 4h| < 1,

which gives the constraint on the integer h = 0.
We now show that this solution can be used to describe realistic compact objects. In

this model, the parameter a has the dimension of length−2. For simplicity, we introduce
the transformation

ã = aS2,

where S is a parameter which has the dimension of length. Under this transformation the
energy density becomes

ρ = ã

S2
(6 − 5ã x̃), (39)

where we have set C = 1 and x̃ = r2/S2. Then the mass contained within a radius R has
the form

M = 12
√

6

25
√

5

S√
ã

. (40)

It is now possible to calculate the central density and mass for particular parameter values
from (39) and (40). For example, if we set ã = 0.024, S = 1 km and k = 0.860531, we
obtain R = 7.07 km, the density at the centre ρ0 = 7.7194 × 1015g cm−3 and the mass
M = 2.2976M�. If we set ã = 0.0071, S = 1 km and k = 1.5823, as another example,
we obtain the central density ρ0 = 2.28296×1015g cm−3 and the mass M = 4.22496M�
for R = 13 km.

694 Pramana – J. Phys., Vol. 78, No. 5, May 2012



Exact anisotropic sphere with polytropic equation of state

5. Discussion

We have generated two classes of models with the polytropic equation of state which
could describe the behaviour of anisotropic compact sphere in static spherically sym-
metric spacetime. We express the system of Einstein field equations as a new system
of differential equations using a coordinate transformation, and then write the system in
another form with polytropic equation of state. The generated models satisfy all the major
physical features of a realistic star: regularity at the origin of the gravitational potential;
positive definiteness of energy density and the radial pressure at the origin; vanishing of
radial pressure at some finite radius; and monotonic decrease of the energy density and
the radial pressure with increasing radius. We have also shown that these models match
smoothly with the Schwarzschild exterior line element at the boundary which restricts the
values of the parameters involved in the model. We note that no restrictions have been
imposed on the tangential pressure in this study. We also impose the causality condition
for n = 2 case and obtain expressions for mass and density, which enable us to compare
our results with some experimental results.

Now we shall compare the values obtained for central density and mass as examples
in §4.2 for n = 2, with some experimental results. For R = 13 km, the density at the
centre ρ0 = 2.28296 × 1015 g cm−3 and the mass M = 4.2M�. It is noted that such
high mass could exist in reality [38]. Experimental observations suggest a strange star
model for SAX J1808.4-3658, which is estimated to have a mass of 1.44M� for a radius
of 7.07 km [39]. It is observed that the mass M = 2.2976M� obtained with polytropic
index n = 2 for a radius of 7.07 km suggests an average density of about 1.6 times of SAX
J1808.4-3658. Hence, as the solutions generated by this model satisfy all major properties
of a realistic star and also give mass and densities comparable with the experimental
observations, it could be useful to study the behaviour of a realistic polytropic star.
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