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Abstract We generate a general frame work to solve the
Einstein system with an equation of state that describe
static spherically symmetric anisotropic matter distribution
in terms of a generating function. It is examined for a Van
der Waals type equation of state with a physically reason-
able form of generating function. The model satisfies all the
required major physical properties of a realistic star. It is
shown to be stable in the low-density regime that may repre-
sent a liquid–gas mixed fluid sphere.

1 Introduction

Many astrophysical and nuclear physics phenomena are of
interest in self-gravitating stellar objects when its structure of
matter approaches densities ρ ∼ 0.16 fm−3 at finite tempera-
ture (< 20 MeV). Exact solutions of the Einsteins field equa-
tions for static spherically symmetric manifolds are impor-
tant in the description of such anisotropic relativistic spheres.
The interior spacetime matches smoothly with the exterior
Schwarzschild model [1]. Many exact solutions to the field
equations have been generated by different approaches with
generalized forms for one of the gravitational potentials that
does have an equation of state (EoS) (linear [2–7], quadratic
[8–10], polytropic [11–16], Van der Waals [17], etc.) and
without [18–25] a particular barotropic EoS relating the pres-
sure to the energy density. However, among large number of
such work reported over the years, relatively few of these
solutions correspond to non-singular metric functions with
physically acceptable energy momentum tensor.

In this work we generate a general frame work describing
static spherically symmetric anisotropic matter distribution
in terms of an equation of state pr = pr (ρ) and gravitational
potential as generating function. We treat Van der Waals type
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of EoS and a physically reasonable form of gravitational
potential as a particular example to model mixed fluid astro-
physical objects that is of physical significance. There are
many phenomena in stellar objects where first-order phase
transitions occur (e.g., pion condensation, kaon condensa-
tion, deconfinement and chiral phase transitions) [26–28],
and the Van der Waals fluid is a good model to illustrate prin-
cipal features of such scenario [29,30]. At low-temperature
high-density limits, as the densities grow the separation dis-
tance between particles decreases and quantum degeneracy
pressure due to the exclusion principle supports against fur-
ther collapse and the average particle energy increases. This
leads to the deconfinement of the nucleons and mixed phases
are expected with various first-order phase transitions, such
as liquid–gas transition in the low densities [31–33], meson
condensations and hadron-quark deconfinement transitions
at high-density region [34–37].

Meson condensations (pions and kaons) have been exten-
sively investigated as new states of high-density hadronic
matter, which may be realized in hybrid stars. Meson con-
densed states are strongly interacting systems of mesons and
baryons whose dynamics is controlled by the underlying chi-
ral symmetry, and quark confinement/deconfinement play an
important role in connecting hadron dynamics and quark–
gluon dynamics, leading to a unified description. The break-
ing of chiral symmetry triggers the onset of kaon condensa-
tion in both hadronic matter phase and the color-flavor locked
(CFL) phase [38]. The authors have shown that a Van der
Waals type EoS with appropriate choice of parameters can
be used to model a neutral strange quark star with ultra-dense
matter in spherically symmetric mixed phases in color singlet
domain [17].

On the other hand, in the low-density regime (ρs ≈
0.16 fm−3) at finite temperature (T < 20 MeV), there
appears a “liquid–gas” mixed phase equilibrium [27,31],
where the coexisting nuclear phase (liquid) and nuclear/
electron phase (gas) are non-congruent and are separated
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in space forming pasta structures. Such frustrated system
of “pasta phase” appears due to competition between the
Coulomb interaction and the strong force, and is constituted
by different geometrical configurations [39–41]. Nuclear
pasta forms in core-collapse supernova events [32,33,42] and
in the inner crust of neutron stars [43], and observation of the
signals of the mixed phase has been suggested in the spectra
of the gravitational waves [44]. Pressure anisotropy [45–47]
is expected to play an important role in such mixed fluid and
we show Van der Waals EOS could represent a low-density
scenario of a star.

2 Anisotropic model with EoS

The interior of static spherically symmetric star can be
described by the metric

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). For
anisotropic imperfect neutral matter distribution the energy
momentum tensor can be taken as

Ti j = diag(−ρ, pr , pt , pt ). (2)

In the above equation the energy densityρ,, radial pressure
pr and tangential pressure pt are measured relative to the
comoving fluid 4-velocity ui = e−νδi0. For the metric (1)
and energy momentum tensor (2) the Einstein field equations
becomes

1

r2 [r(1 − e−2λ)]′ = ρ, (3)

− 1

r2 (1 − e−2λ) + 2ν′

r
e−2λ = pr , (4)

e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
= pt , (5)

where primes denote differentiation with respect to r . To
obtain the Einstein system of Eqs. (3)–(5), we assumed
8πG = 1 and the speed of light c = 1. The system of
Eqs. (3)–(5) describes the behaviour of the gravitational field
inside an anisotropic star.

The mass contained within the sphere of radius r is given
by

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

Using the transformation suggested by Durgapal and Ban-
nerji [48]

x = r2, Z(x) = e−2λ(r) A2y2(x) = e2ν(r), (7)

the system (3)–(5) becomes

1 − Z

x
− 2Ż = ρ, (8)

4Z
ẏ

y
+ Z − 1

x
= pr , (9)

4x Z
ÿ

y
+ (4Z + 2x Ż)

ẏ

y
+ Ż = pt , (10)

where A is an arbitrary constant and dots denote differentia-
tion with respect to the variable x . Under this transformation
(7) the mass function (6) becomes

m(x) = 1

4

∫ x

0

√
wρ(w)dw. (11)

A physically realistic fluid matter distribution is expected
to satisfy the barotropic equation of state

pr = pr (ρ) (12)

With the inclusion of (12), the general solution to the sys-
tem (8)–(10) can be written as

e2λ = Z−1, (13)

e2ν = A2y2, (14)

ρ = 1 − Z

x
− 2Ż , (15)

pr = pr (ρ), (16)

pt = pr + Δ, (17)

Δ = 4x Z
ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
, (18)

in terms of the gravitational potential Z , where the quantity
Δ = pt − pr is the measure of anisotropy,

y = dx− 1
4 exp

[∫
1 + xpr (ρ)

4x Z
dx

]
(19)

and d is a constant of integration. Therefore the line element
(1) takes the form

ds2 = −d2r−1 exp

[∫ (
1 + r2 pr (ρ)

r Z

)
dr

]
dt2

+ Z−1dr2 + r2(dθ2 + sin2 θdφ2). (20)

Hence, any solution describing static spherically symmetric
anisotropic matter distribution with any form of equation of
state can be easily determined by the generating function
Z(r) if pr = pr (ρ) is specified. In particular, for a linear
EoS

pr = pr (ρ) = αρ − β, (21)
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where α and β are real constants the metric (20) reduces to

ds2 = −d2r−(1+α)Z−α exp

[∫ (
1 + α − βr2

r Z

)
dr

]
dt2

+ Z−1dr2 + r2(dθ2 + sin2 θdφ2). (22)

The metric (22) with Tolmann IV type potential for Z has
been shown to well model a strange star candidate [6].

3 Particular model with Van der Waal’s EoS

In principle we can express any model explicitly from the sys-
tem (13)–(18) that describe the behaviour of an anisotropic
star if the form of the equation of state pr = pr (ρ) and the
gravitational potential Z are specified. Consequently, in this
paper, we consider the modified Van der Waals equation of
state

pr = pr (ρ) = αρ2 + βρ

1 + γρ
, (23)

where α, β and γ are real constants together with the form
for the gravitational potential

Z = (2 − ax)

2(1 + ax)
, (24)

where a is a positive real constant. The gravitational potential
Z is regular at the origin and well behaved in the stellar
interior for a wide range of values for the parameters a. This
form of gravitational potential were previously used to study
an isotropic perfect fluid sphere [48] and shown to satisfy all
the physical requirements for realistic neutron star [49]. Later
this model were generalized by Thirukkanesh and Maharaj
[19] and Thirukkanesh and Ragel [50]. Therefore the form
chosen in (24) is physically viable.

Substituting (23) and (24) into (19) we obtain

y = d exp

[
−aα(11 + 8ax)

4(1 + ax)2

]
(1 + ax)

25aα
24

× (2 − ax)
−

(
3
4 + 25aα

24 + 15β
2(6+5aγ )

)

× f (x)
3β(4−5aγ )
8(6+5aγ ) g(x)

β
√

3aγ (52−15aγ )

8
√

3aγ−16 (6+5aγ ) . (25)

where

f (x) = 3aγ (3 + ax) + 2(1 + ax)2,

g(x) = 4(1 + ax) + 3aγ + √
3aγ (3aγ − 16)

4(1 + ax) + 3aγ − √
3aγ (3aγ − 16)

Hence an exact model for the system (13)–(18) is as follows

e2λ = 2(1 + ax)

(2 − ax)
(26)

e2ν = A2d2 exp

[
−aα(11 + 8ax)

2(1 + ax)2

]
(1 + ax)

25aα
12

× (2 − ax)
−

(
3
2 + 25aα

12 + 15β
(6+5aγ )

)

× f (x)
3β(4−5aγ )
4(6+5aγ ) g(x)

β
√

3aγ (52−15aγ )

4
√

3aγ−16 (6+5aγ ) (27)

ρ = 3a(3 + ax)

2(1 + ax)2 (28)

pr = αρ2 + βρ

1 + γρ
, (29)

pt = pr + Δ, (30)

Δ = 2x

(
2 − ax

1 + ax

)
ÿ

y
+ 3ax

2(1 + ax)2

(
a − 2

ẏ

y

)
, (31)

where y is given by (25). The solution (26)–(31) is given in
simple elementary function so it may be used to model an
anisotropic star with Van der Waals equation of state.

The mass function takes the form

m(x) = 3ax
3
2

4(1 + ax)
. (32)

4 Physical analysis

In the analysis of physical viability, the following conditions
have been generally recognized to be crucial for anisotropic
fluid spheres [51,52]:

(i) the density ρ and the radial pressure pr should be pos-
itive inside the star;

(ii) the density ρ, the radial pressure pr and the tangential
pressure pt should be monotonically decreasing from
center to surface;

(iii) the radial pressure pr must vanish but the tangential
pressure pt need not necessarily vanish at the boundary
of the sphere. However, the radial pressure should be
equal to the tangential pressure at center of the fluid
sphere;

(iv) inside the static configuration the speed of sound should

be less than the speed of light, i.e., 0 ≤ V 2
Sr = dpr

dρ
≤ 1

and 0 ≤ V 2
St = dpt

dρ
≤ 1;

(v) the energy–momentum tensor has to obey the condi-
tions ρ − pr − 2pt ≥ 0 and ρ + pr + 2pt ≥ 0;

(vi) At the boundary of the star r = R, the interior met-
ric matches smoothly with the exterior Schwarzschild
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metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2),

where M is the total mass of the sphere.

Now we show that the model generated satisfy the above
physical conditions and hence, physically represent a realistic
star. From condition (iii), at the boundary of the star r = R,
we have pr (R) = 0 which yield

R =
⎡
⎣ − 1

8aβ

(
8β + 3a(α +

√
α2 − 4βγ )

)

+ 1

4β

√
3α

2a

√√√√
[
(3aα − 16β − 6aβγ ) + ψ√

α2 − 4αβγ

]⎤
⎦

1/2

,

where ψ = 3aα2 − 16αβ + 64β2γ − 12aαβγ . For suitable
choice of parameters α, β and γ we can get the positive radius
R. The matching condition (vi) imply
(

1 − 2M

R

)−1

= 2(1 + aR2)

(2 − aR2)
(33)

(
1 − 2M

R

)
= A2y2(R2), (34)

where M = m(R) = 3aR3

4(1+aR2)
. The condition (33) does

not impose any restrictions on the parameters. However the
condition (34) impose restriction on the parameters A as

A2 = (2 − aR2)

2(1 + aR2)y2(R2)
.

Due to complexity of the solution, we show graphically
that the matter variable are well behaved throughout the inte-
rior of the star and the plotted radial dependence of physical
quantities of the model illustrates that the model satisfy the
conditions (i)–(v). The graphs have been plotted for a par-
ticular choice of parameter values a = 0.001, α = 45, β =
− 0.1655 and γ = 1 with stellar boundary R = 11.5 km.
The choice of parameters have been such that the model is
physically viable satisfying the conditions (i)–(v).

Figures 1 and 2 show that the energy density and the radial
pressure decreases monotonically with increasing radius, and
the density is non-zero at the surface and the radial pressure
vanishes, which is the requirement for realistic star. However,
as seen in Fig. 3, the tangential pressure is non-zero at the
surface, which is physically possible [51], and such a sce-
nario of anisotropic fluid has been explained by assumption
of particles moving on circular orbits [53,54] and the tangen-
tial pressure of a surface layer is related to surface tension
[55]. As demonstrated in Fig. 4, the anisotropy Δ is repulsive

Fig. 1 Energy density

Fig. 2 Radial pressure

Fig. 3 Tangential pressure

and increases monotonically towards the surface boundary
remaining finite and continuous in the interior. Moreover,
Figs. 5 and 6 illustrate that inside the static configuration the
square of speed of sound (both radial and tangential) remain
between 0 and 1, satisfying another physical requirement.
Figures 7 and 8 show that the energy–momentum tensor
of the model is physically admissible, satisfying the con-
dition (v). Therefore the model, for the chosen parameters
satisfy all major physical conditions (i)–(vi) listed above
of a realistic star. Moreover, Figure 9 illustrates that the
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Fig. 4 Measure of anisotropy

Fig. 5 The square of radial speed of light

Fig. 6 The square of tangential speed of light

model satisfy in addition the important stability condition
[56] −1 ≤ V 2

St − V 2
Sr ≤ 0.

For the model generated by these parameter values, we
calculate the mass of the stellar object to be M = 0.6818M�,
central density ρ(0) = 2.4123 × 1014 g cm−3 and surface
density ρ(R) = 1.9646 × 1014 g cm−3, which shows that
the stellar object has a density less than the nuclear saturation
density 2.8×1014 g cm−3, with model parameters that could

Fig. 7 Condition for energy–momentum tensor

Fig. 8 Condition for energy–momentum tensor

Fig. 9 Condition for stability

represent the “liquid–gas” mixed phase equilibrium in the
low-density regime.

5 Conclusion

In this paper, a general frame work is generated to describe
static spherically symmetric anisotropic matter distribution
with an equation of state pr = pr (ρ) and gravitational poten-
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tial Z(r) as generating function. The general model is exam-
ined by choosing Van der Waals type equation of state with

gravitational potential Z = (2 − ax)

2(1 + ax)
, to represent liquid–

gas mixed fluid sphere. The model is shown to satisfies all
the required major physical properties of a realistic star, and
stable in the investigated low-density regime.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
has no measured data associated; the plots involve data generated by
modelling.]
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