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In this paper we investigate the role of causal heat transport in a spatially homogeneous,
locally-rotationally symmetric Bianchi type-V cosmological model. In particular, the
causal temperature profile of the cosmological fluid is obtained within the framework of
extended irreversible thermodynamics. We demonstrate that relaxational effects can alter
the temperature profile when the cosmological fluid is out of hydrostatic equilibrium.
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1. Introduction

While the standard Big Bang cosmological model has accounted for observations of

homogeneity and isotropy of the Universe on large scales there are still open ques-

tions regarding the identification of the dark energy components making up the cos-

mic fluid.1 This has led to the pursuit of more general models in which the geometry

and the matter content have drastically changed when compared to the standard

FRW cosmologies. To date the ΛCDM concordance model has proved to be highly

successful in accounting for all current observations ranging from supernovae Ia,

CMBR anisotropies,weak lensing, baryon oscillations through to large-scale struc-

ture formation.2 There are various alternative cosmological models ranging from

inhomogeneous cosmologies with dissipative fluxes,3, 4 singularity-free models,5, 6

emergent Universe models7, 8 and the spatially homogeneous Bianchi models.9, 10 It

is claimed that these models can account for many of the mechanisms leading to the

current state of the Universe such as inflation, particle production and anisotropy

in the infant Universe. The homogeneous and isotropic FRW cosmological models
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are particular cases of the Bianchi I, V and IX universes, depending on the con-

stant curvature of the physical three-space, t = constant. In particular, the Bianchi

V universe is a simple generalisation of the negative curvature FRW models.9, 10

These alternative models can represent particular epochs during the evolution of

our Universe. As pointed out by Ellis11 the anisotropic Bianchi-type cosmologies

are worthy of attention even if current observations indicate that our Universe is

FLWR-like in nature. The observed isotropy of the present Universe does not rule

out the possibility of dominant anisotropic effects in the early Universe.

The role of dissipation in inhomogeneous cosmological models have been widely

studied. Romano and Pavon studied the evolution of the Bianchi type-I model with

viscous dissipation within the framework of extended irreversible thermodynam-

ics.12 They were able to show that the Bianchi type-I cosmological model does not

asymptotically evolve into the Friedmann or de-Sitter phase. This is mainly due

to relaxational effects within the cosmological fluid. Romano and Pavon utilised

both the truncated and full causal thermodynamic theory to study the evolution

of the Bianchi type-III cosmological models. Their results show that there is rapid

dissipation of the initial anisotropies leading to stable de Sitter solutions while the

Friedmann ones are unstable.13 Causal heat transport in an inhomogeneous cosmo-

logical model was investigated by Triginer and Pavon.14 By imposing a barotropic

equation of state and by employing a heat transport equation of Maxwell-Cattaneo

form they were able obtain more general behaviour of the scale factor and entropy

production for various spherically symmetric, inhomogeneous cosmological models.

Singh and Beesham16 investigated the effect of heat flow in a LRS Bianchi type-V

universe with constant deceleration parameter. They calculated the temperature

distribution for the cosmological fluid by employing the Eckart transport equation

for the heat flow.

In this paper we revisit the model investigated by Singh and Beesham with the

view of highlighting the relaxational effects on the temperature distribution. To

this end we employ a causal heat transport equation of Maxwell-Cattaneo form.

By assuming that the relaxation time is inversely proportional to the inverse of

the absolute value of the expansion of the cosmic fluid we are able to integrate the

truncated heat transport equation to obtain the temperature profile. Our results

show distinct differences between the causal and noncausal temperatures throughout

the cosmic fluid.

2. LRS Bianchi type-V cosmology

The line element for locally-rotationally symmetric Bianchi type-V cosmological

model is given by16

ds2 = −dt2 +A2dx2 + e2xB2
(

dy2 + dz2
)

, (1)

where A = A(t) and B = B(t) are metric functions yet to be determined. The

matter distribution for the cosmological fluid interior is represented by the energy
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momentum tensor of an imperfect fluid

Tab = (ρ+ p)uaub + pgab +Qaub +Qbua, (2)

where ρ is the energy density, p is the pressure and Q = (QaQa)
1
2 is the magnitude

of the heat flux. The fluid four–velocity u is comoving and is given by

ua = δa0 . (3)

The heat flow vector takes the form

Qa = (0, Q1, 0, 0), (4)

since Qaua = 0 and the heat is assumed to flow in the radial direction. The fluid

collapse rate Θ = ua
;a of the stellar model is given by

Θ =
Ȧ

A
+ 2

Ḃ

B
. (5)

The Einstein field equations reduce to

ρ = 2
Ȧ

A

Ḃ

B
+

Ḃ2

B2
−

3

A2
, (6)

p =
1

A2
−

Ḃ2

B2
− 2

B̈

B
, (7)

p =
1

A2
−

Ȧ

A

Ḃ

B
−

Ä

A
−

B̈

B
, (8)

Q1 = 2

(

Ḃ

B
−

Ȧ

A

)

, (9)

for the line element (1). The generalized mean Hubble parameter H is given by

H =
ȧ

a
=

1

3

(

Ȧ

A
+ 2

Ḃ

B

)

, (10)

where a = (AB2)1/3 is the average scale factor. The dot denotes a derivative with

respect to cosmic time t.

3. Evolution of Hubble parameter

Observations of the CMB and SNe Ia data point to an accelerating universe (q < 0)

where q is the deceleration parameter. Following Singh et al10 we assume that the

Hubble parameter is related to the average scale factor by

H = la−n = l(AB2)−n/3, (11)

where l(> 0) and n(≥ 0) are constants, and

n = q + 1, (12)
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where H is defined as in eq. (10) and q the deceleration parameter defined by

q = −
äa

ȧ2
. (13)

Using eqs. (11) and (12), the solution of eq. (13) gives the law of variation of average

scale factor of the form

a = (nlt)1/n, (14)

for n 6= 0 and

a = c exp[lt], (15)

for n = 0, where c is the constant of integration. Here, in eq. (14), we have assumed

that for t = 0 the value a = 0 so that the constant of integration vanishes.

Now, from eqs. (7) and (8), we get

B̈

B
−

Ä

A
+

Ḃ2

B2
−

Ȧ

A

Ḃ

B
= 0. (16)

Integrating eq. (16) and utilizing a = (AB2)1/3, the metric functions A and B can

be expressed as quadratures

A(t) = (d1)
−2/3a exp

[

−
2k1
3

∫

a−3dt

]

, (17)

B(t) = (d1)
1/3a exp

[

k1

3

∫

a−3dt

]

, (18)

where k1 and d1 are the constants of integration.

The case n 6= 0 was considered by Singh and Beesham.16 Our aim is to inves-

tigate relaxational effects when the cosmic fluid leaves hydrostatic equilibrium. To

this end we consider the case n = 0 which is equivalent to q = −1 which corresponds

to inflation. Substituting eq. (15) into eqs. (17) and (18), the solution of the metric

functions is given by

A(t) = (d1)
−2/3c exp

[

lt+
2k1
3lc3

exp(−3lt)

]

, (19)

B(t) = (d1)
1/3c exp

[

lt−
k1

3lc3
exp(−3lt)

]

. (20)

The heat flow is given by

Q1 =
2k1
c3

exp(−3lt). (21)
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The energy density and pressure are respectively given by

ρ = 3l2 −
1

3

k21
c6

exp(−6lt)

−3(d1)
4/3c−2 exp

[

−2

(

lt+
2k1
3lc3

exp[−3lt]

)]

, (22)

p = −3l2 −
1

3

k21
c6

exp(−6lt)

+(d1)
4/3c−2 exp

[

−2

(

lt+
2k1
3lc3

exp[−3lt]

)]

. (23)

As pointed out by Singh and Beesham, the Universe as described by this

model starts evolving with constant kinematical and thermodynamical parame-

ters and maintains a constant expansion rate. At late times this model mimicks

an inflationary-like behaviour with an equation of state p = −ρ. Inflation driven

by heat flux was demonstrated by Maartens et al3 in which they showed that the

heat flux serves to ‘balance’ the decrease in energy density while the pressure of the

cosmic fluid steadily decreases. In order to determine the deviation of the cosmic

fluid from hydrostatic equilibrium we calculate the covariant dimensionless ratio

|Q|

ρ
= 2

√

(d1)4/3k2
1 exp[−

exp[−3ltk1]−8lt

3c3l
]

c8

−
3(d1)3/2 exp[

− exp[−3ltk1]−2lt

3c3l
]

c2 −
k2
1 exp[−6lt]

3c6 + 3l2
, (24)

which for late times decreases rapidly indicating that |Q| decreases less rapidly than

ρ during this epoch. Herrera et al
18 have shown that a certain parameter α defined

by

α =
1

(ρ+ p)

(

ζ

2τζ
+

κT

τκ
+

2η

3τη

)

,

where ζ, κ and η are the transport coefficients of bulk viscosity, heat conduction

and shear viscosity, respectively and τsi are the corresponding relaxation times, is a

measure of the strength of expansion during the inflationary phase. Larger values

of α lead to stronger expansion. Furthermore, more efficient models of inflation can

be constructed by including bulk viscosity, heat conduction and shear viscosity thus

strengthening the case for inhomogeneous cosmological models.

4. Causal Thermodynamics

In order to study the influence of relaxational effects when the cosmic fluid de-

parts from hydrostatic equilibrium we employ a causal heat transport equation of

Maxwell-Cattaneo form given by19–22

τha
bQ̇b +Qa = −κ

(

ha
b∇bT + T u̇a

)

(25)

where hab = gab + uaub projects into the comoving rest space, T is the local equi-

librium temperature, κ (≥ 0) is the thermal conductivity, and τ (≥ 0) is the relax-

ational time-scale which gives rise to the causal and stable behaviour of the theory.
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The noncausal Fourier heat transport equation is obtained by setting τ = 0 in (25).

For the metric (1), equation (25) becomes

τ(QA)
·
+QA = −

κ(T )′

A
(26)

where T ′ represents the temperature gradient. Note that on setting τ = 0, we regain

the Eckart heat transport equation

QA = −
κ(T )′

A
(27)

which was utilised by Singh and Beesham to obtain noncausal temperature profiles.

Following Triginer and Pavon,14 we assume the thermal conductivity is that for a

radiation fluid interacting with matter

κ = cT 3σ, (28)

where c > 0 is a constant and σ is the mean collision time. The mean collision time

is related to the particle number density n via

σ = αn−1/3, (29)

where α > 0 is an arbitrary constant. The particle conservation equation

dn

ds
+ nΘ = 0, (30)

which yields n ∝ (AB2)−1. We can finally write

σ = α(AB2)1/3, (31)

where α > 0 is another constant. Since Θ−1 is the only natural time scale of the

cosmological fluid, we define the relaxation time as follows

τ = β|Θ−1| = β

(

Ȧ

A
+ 2

Ḃ

B

)

−1

(32)

where β(≥ 0) can be viewed as a causality ’switch’. By setting β = 0 we regain

the noncausal Eckart transport equation. The mean collision time is related to the

relaxation time via (29), (30) and (32). We can write

σ = σ0e
−

∫ β
τ dt (33)

where σ0 > 0 is a constant. Utilising (19) and (20) in (32) we obtain

τ =
β

3l
(34)

which corresponds to constant relaxation time. From (33), we can immediately write

σ = σ0e
−3lt (35)
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. We can conclude that the assumption made in (32) holds to good approximation

in the early evolution of the cosmological fluid when temperatures are sufficiently

high.15 The causal heat transport equation (26) becomes

β

(

Ȧ

A
+ 2

Ḃ

B

)

−1

(QA)
·
+QA = −c0T

3 (AB
2)1/3

A
T ′, (36)

which easily integrates to

T 4 = −
4

c0

(

A

B

)2/3


β

(

Ȧ

A
+ 2

Ḃ

B

)

−1

(QA)
·
+QA



x+ F(t), (37)

where

Q =
2

A2

[

Ḃ

B
−

Ȧ

A

]

(38)

The above equation is readily solved to give us the noncausal temperature profiles

for the two cases that we have investigated thus far. For n = 0 which corresponds

to the case of constant deceleration parameter q = −1 yields

T 4 =
−24k1
c0c4

exp(−4lt)

[

β

(

k1

c3
exp(−3lt)− 2

)

+ 1

]

x+ F2(t) (39)

where F2(t) is a function of integration. Note that (39) does not guarantee T > 0.

Requiring T > 0 on physical grounds will constrain the free parameters appearing

in (39). The noncausal temperature is obtained by setting β = 0 in (39). This would

imply (from (32)) that thermal equilibrium is achieved instantaneously which is one

of the pathologies of the Eckart theory. It has been pointed out that entropy of the

Universe behaves like a an ordinary system and tends to a maximum value of the

order of H−2 as a → ∞.17 The rate of entropy production is given by

Sa
;a =

QaQa

T 2
=

4(d1)
4/3k21 exp[−

4k1 exp[−3lt]
3c3l − 8lt]

c8
√

−24 c4k1x exp[−4lt](1+(−2+k1 exp[−3lt]/c3)β)
c0

+ F2(t)
,

which vanishes as t → ∞ for an appropriate choice of F . Let us consider the

temperature profile for the case n = 0. Figures 1 and 2 show the evolution of the

causal and noncausal temperature profiles respectively. In order to generate these

plots we chose the following parameters: d1 = 1, k1 = 10000, c = 0.001, l = 1, c0 =

−1. Figure 1 corresponds to the case β = 0 giving the noncausal temperature. Figure

2 corresponds to the case β = 1000 representing the causal temperature profile. It

is evident that the causal temperature is everywhere greater than its noncausal

counterpart. In the infinite past both the causal and noncausal temperatures are

at a maximum and decrease as the fluid evolves with time. The drop-off in the

temperature is greater in the causal case than the noncausal case indicating that

cooling is enhanced by relaxational effects.
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5. Concluding remarks

We have successfully obtained the causal temperature profile for an LRS Bianchi

type-V cosmological fluid with constant deceleration parameter. Our results gen-

eralise the thermodynamical results obtained by Singh and Beesham.16 Our inves-

tigation show that relaxational effects within the cosmic fluid leads to a higher

temperature . We also found that the rate of entropy production decreases as the

Universe evolves in time, tending to zero for late times. It would be interesting

to investigate the evolution of the temperature profile for the LRS Bianchi type-V

universe with dissipation by employing a full causal heat transport equation. Work

in this direction has been initiated.
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Fig. 1. Noncausal temperature as a function of the radial x and temporal t coordinates
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Fig. 2. Causal temperature as a function of the radial x and temporal t coordinates


