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Abstract

We investigate the behaviour of a relativistic spherically symmetric radiative

star with an accelerating, expanding and shearing interior matter distribution in

the presence of anisotropic pressures. The junction condition can be written in

standard form in three cases: linear, Bernoulli and Riccati equations. We can

integrate the boundary condition in each case and three classes of new solutions

are generated. For particular choices of the metric we investigate the physical

properties and consider the limiting behaviour for large values of time. The

causal temperature can also be found explicitly.

1 Introduction

The problem of radiative gravitational collapse was first investigated by Oppenheimer

and Snyder1. Their interior spacetime is represented by a Friedmann-like solution for

an isotropic homogeneous universe, and the exterior spacetime is described by the ex-

terior Schwarzschild metric. The process of gravitational collapse is highly dissipative.

1Permanent address: Department of Mathematics, Eastern University, Chenkalady, Sri Lanka.

2Permanent address: Department of Mathematics, Durban University of Technology, Steve Biko

Campus, Durban, 4001, South Africa.

3Electronic mail: maharaj@ukzn.ac.za

1

http://arxiv.org/abs/1301.1485v1


Therefore heat flow in the interior of the star must be present, and taken into account so

that the interior solution of the radiating star can match to the Vaidya2 exterior metric

at the boundary. The investigation of the gravitational behaviour of a collapsing star

depends on the determination of the junction conditions matching the interior metric

with the exterior Vaidya metric across the boundary of the star. Santos3 formulated

the junction conditions for a shear-free fluid distribution with isotropic pressures and

made it possibile to complete the model. His treatment paved the way to investigate

physical features such as surface luminosity, dynamical stability, relaxation effects and

temperature profiles. Raychaudhuri4, showed that the slowest collapse arises in the

case of shear-free fluid interiors. Kolassis et al 5 assumed geodesic fluid trajectories

when generating an exact model. Their model was generalised to include several new

classes of solution in geodesic motion by Thirukkanesh and Maharaj6. In the past

many investigations in radiating collapse have focussed on shear-free spacetimes with

isotropic pressures (see the treatments of Herrera et al 7, Maharaj and Govender8,

Herrera et al 9 and Misthry et al 10).

The next stage of development was to include shear in the model of a radiating star.

Naidu et al 11 included anisotropic pressures in the presence of shear for the interior

spacetime and found simple exact solutions for geodesic fluid trajectories. This toy

model was generalised by Rajah and Maharaj12 by demonstrating solutions to a Ric-

cati boundary equation governing the gravitational behaviour. The general situation

requires a model which is expanding, accelerating and shearing. Noguiera and Chan13,

modelling shear viscosity and bulk viscosity, attempted such a study but found that

they needed to utilise numerical techniques to make progress. Some recent progress

has been made in finding exact models for Euclidean stars by Herrera and Santos14

and Govender et al 15. In Euclidean stars with shear the areal radius and proper ra-

dius are equal throughout the evolution of the radiating star. Our objective here is to

show that it is possible to solve the relevant equations, for the general case, exactly in

a systematic fashion. Our approach is the first analytic treatment to consider exact

models with all the kinematical quantities present. We believe that these solutions will

be helpful in studying physical features of a relativistic star in an astrophysical setting.

In this paper we attempt to perform a systematic treatment of the governing equa-

tion at the boundary of the relativistic star with the interior consisting of a fluid which

has nonzero acceleration, expansion and shear. The junction condition is a nonlinear

partial differential equation containing all three metric functions of spherical symme-

try. In Section 2, we derive the field equations and the junction conditions. In Section

3, we give the boundary differential equation governing the gravitational behaviour

of a radiating, shearing and accelerating sphere. In Section 4, three new classes of

exact solutions to the boundary condition are found in closed form. In Section 5, we
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briefly investigate the physical features of the model generated and present the explicit

form of the causal temperature for a particular choice of the metric functions. Some

concluding remarks are made in Section 6.

2 The model

The most general form for the interior space time of a spherically symmetric collapsing

star, which is expanding, accelerating and shearing, is given by the line metric

ds2 = −A2dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2), (1)

where A,B and Y are in general functions of both the temporal coordinate t and the

radial coordinate r. The existence of a fluid 4-velocity vector u enables us to introduce

the kinematical quantities

u̇a = ua
;bu

b, Θ = ua
;a, σab = ha

chb
du(c;d), (2)

where hab = gab+uaub (habu
a = 0) is the symmetric projection tensor. The acceleration

vector u̇a (u̇aua = 0) represents the acceleration of the fluid particles relative to the

congruences of u; the expansion scalar Θ measures the rate of increase of a volume of

fluid element; the shear σab (σabu
b = 0 = σa

a) represents the tendency of a sphere to

distort to an ellipsoid. For the comoving fluid 4-veloctiy ua = 1
A
δa0 and the line element

(1), the acceleration vector u̇a, the expansion scalar Θ and the magnitude of the shear

scalar σ are given by

u̇a =

(

0,
A′

AB2
, 0, 0

)

, (3a)

Θ =
1

A

(

Ḃ

B
+ 2

Ẏ

Y

)

, (3b)

σ = − 1

3A

(

Ḃ

B
− Ẏ

Y

)

, (3c)

where primes and dots on the metric functions denote differentiation with respect to r

and t respectively. The energy momentum tensor for the interior matter distribution

has the form

Tab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (4)

where ρ is the density of the fluid, p is the isotropic pressure, qa is the heat flux vector

and πab is the stress tensor. The stress tensor can be expressed as

πab = (pr − pt)

(

nanb −
1

3
hab

)

, (5)
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where pr is the radial pressure, pt is the tangential pressure and n is a unit radial vector

given by na = 1
B
δa1 . The isotropic pressure

p =
1

3
(pr + 2pt) (6)

relates the radial pressure and the tangential pressure.

For the line element (1) and matter distribution (4) the coupled Einstein field

equations become

ρ =
2

A2

Ḃ

B

Ẏ

Y
+

1

Y 2
+

1

A2

Ẏ 2

Y 2

− 1

B2

(

2
Y ′′

Y
+

Y ′2

Y 2
− 2

B′

B

Y ′

Y

)

, (7a)

pr =
1

A2

(

−2
Ÿ

Y
− Ẏ 2

Y 2
+ 2

Ȧ

A

Ẏ

Y

)

+
1

B2

(

Y ′2

Y 2
+ 2

A′

A

Y ′

Y

)

− 1

Y 2
, (7b)

pt = − 1

A2

(

B̈

B
− Ȧ

A

Ḃ

B
+

Ḃ

B

Ẏ

Y
− Ȧ

A

Ẏ

Y
+

Ÿ

Y

)

+
1

B2

(

A′′

A
− A′

A

B′

B
+

A′

A

Y ′

Y
− B′

B

Y ′

Y
+

Y ′′

Y

)

, (7c)

q = − 2

AB2

(

− Ẏ ′

Y
+

Ḃ

B

Y ′

Y
+

A′

A

Ẏ

Y

)

, (7d)

where the heat flux qa = (0, q, 0, 0) has only the nonvanishing radial component. A

comprehensive treatment of the effects of anisotropy with heat flow in general relativity

was carried out by Herrera et al 16; the first study with anisotropy appears to be in

the treatment of Lemaitre17. The system of equations (7a)-(7d) governs the general

model when describing matter distributions with anisotropic pressures in the presence

of heat flux for a spherically symmetric relativistic stellar object. For this model (7a)-

(7d) describes the nonlinear gravitational interaction for a shearing matter distribution

which is expanding and accelerating. From (7a)-(7d), we observe that if forms for the

gravitational potentials A,B and Y are known, then the expressions for the matter

variables ρ, pr, pt and q follow immediately. When the radial and tangential pressures

are identical then pr = p⊥ which generates an additional nonlinear partial differential

equation called the condition of pressure isotropy.

The Vaidya exterior spacetime2 of a radiating star is given by

ds2 = −
(

1− 2m(v)

R

)

dv2 − 2dvdR+R2(dθ2 + sin2 θdφ2), (8)
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where m(v) denotes the mass of the fluid as measured by an observer at infinity.

The line element (8) represents coherent null radiation. The flow of the radiation is

restricted to the radial direction relative to the hypersurface Σ, which represents the

boundary of the star. The matching of the metric potentials and extrinsic curvature for

the interior spacetime (1) and the exterior spacetime (8) produces junction conditions

on the hypersurface Σ. These can be written as

A(RΣ, t)dt =

(

1− 2m

RΣ

+ 2
dRΣ

dv

)
1

2

dv, (9a)

Y (RΣ, t) = RΣ(v), (9b)

m(v)Σ =

[

Y

2

(

1 +
Ẏ 2

A2
− Y ′2

B2

)]

Σ

, (9c)

(pr)Σ = (qB)Σ. (9d)

The junctions conditions (9a)-(9d) were first derived by Santos3 for a shear-free radi-

ating relativistic star. It is important to note the nonvanishing of the radial pressure

at the boundary Σ. Thus there is an additional differential equation (9d) which has

to be satisfied together with the system of Einstein field equations (7a)-(7d). Junc-

tion conditions similar to (9d) are important in describing phenomena which arise in

astrophysics. Di Prisco et al 18 generated junction conditions relevant to spherical col-

lapse with dissipation, in the presence of shear, for nonadiabatic charged fluids. Causal

thermodynamics, in the context of the Israel-Stewart theory, was utilised by Herrera et

al 19 to study viscous dissipative gravitational collapse in both the streaming out and

diffusion approximations.

3 The boundary condition

Substituting (7b) and (7d) in (9d) we obtain the boundary condition which has to be

satisfied at the stellar surface.

2Y Ÿ + Ẏ 2 − 2

(

Ȧ

A
+

A′

B

)

Y Ẏ + 2
A

B
Y Ẏ ′

−2
A

B2

(

A′ + Ḃ
)

Y Y ′ − A2

B2
Y ′2 + A2 = 0. (10)

Equation (10) is the governing equation that determines the gravitational behaviour

of the radiating anisotropic star with nonzero shear, acceleration and expansion. It

is clear that (10) is highly nonlinear; it is difficult to solve without making certain

simplifying assumptions. Some exact solutions to (10) were found by Naidu et al 11
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and Rajah and Maharaj12 for particles in geodesic motion (u̇a = 0) but expansion

Θ 6= 0 and shear σ 6= 0. Chan20 considered the general case with u̇a 6= 0, Θ 6= 0 and

shear σ 6= 0 but no exact solutions were found. Instead the boundary condition was

analysed numerically to study the physical features of the model, producing a final

state where the star has radiated away mass during collapse. By assuming a relation

between the metric functions B and Y for Euclidean stars Govender et al 15 found

particular models with shear.

Our intention is to solve (10) exactly without restricting the functions. For conve-

nience we rewrite (10) in the following form

Ḃ−
[

Ÿ

AY ′
+

Ẏ 2

2AY Y ′
− Ȧ

A2

Ẏ

Y ′
+

A

2Y Y ′

]

B2−
[

Ẏ ′

Y ′
− A′

A

Ẏ

Y ′

]

B+

[

A′ +
AY ′

2Y

]

= 0. (11)

In general (11) is a Riccati equation in the gravitational potential B. This Riccati

equation can be solved in special cases.

4 Exact solutions

The complexity and nonlinearity in (11) makes it difficult to solve in general. However

particular exact solutions can be found if we view (11) as a first order differential

equation in the variable B and place restrictions on the bracketed expressions. We

demonstrate this in the following three cases.

4.1 Linear equation

Note that equation (11) becomes a linear equation if we set

Ÿ

AY ′
+

Ẏ 2

2AY Y ′
− Ȧ

A2

Ẏ

Y ′
+

A

2Y Y ′
= 0. (12)

This equation can be written as

Ȧ−
[

Ÿ

Ẏ
+

Ẏ

2Y

]

A =
A3

2Y Ẏ
, (13)

which is a Bernoulli equation in the variable A. Even though Y is an arbitrary function,

this equation can be integrated in general, and we have

A2 =
Y Ẏ 2

h(r)− Y
, (14)

where h(r) is a function of integration. With the result (14), we find that (11) becomes

Ḃ −
[

Ẏ ′

Y ′
− A′

A

Ẏ

Y ′

]

B +

[

A′ +
AY ′

2Y

]

= 0, (15)
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which is linear in B.

The bracketed expressions in (15) contain the functions A, Y and their derivatives.

In spite of this difficulty it is possible to solve (15) and obtain B in general. Therefore

the solution for the junction condition (11) can be given by

A =

√

Y Ẏ 2

h(r)− Y
, (16a)

B = Y ′ exp

(

−
∫

A′Ẏ

AY ′
dt

)

×
{

k(r)−
∫

[

(

A′

Y ′
+

A

2Y

)

exp

(

∫

A′Ẏ

AY ′
dt

)]

dt

}

, (16b)

Y = Y (t, r), (16c)

where k(r) is a function of integration. We believe that (16a)-(16c) is a new solution to

the boundary condition (10). Note that the gravitational potential Y (t, r) is an arbi-

trary function in this class of solution. Once Y is specified then an explicit form for A

is generated from (14) and the integrals in (16a)-(16c) can be evaluated. Consequently

explicit forms for the metric functions A,B and Y can be found. The choice for Y

should be made to provide a physically reasonable model.

4.2 Bernoulli equation

Observe that equation (11) reduces to a Bernoulli equation if we set

A′ +
AY ′

2Y
= 0. (17)

Integrating this equation we get

Y =
C1(t)

A2
, (18)

where C1(t) is a function of integration. Substituting (18) into (11) we obtain

Ḃ −
[

3

2

Ċ1

C1

− 4
Ȧ

A
+

Ȧ′

A′

]

B

=

[

7

2

ȦĊ1

AA′C1

− 5
Ȧ2

A2A′
− C̈1

2C1A′
+

Ä

AA′
− Ċ1

2

4C2
1A

′
− A6

4C2
1A

′

]

B2, (19)

which is a Bernoulli equation in the variable B.

The coefficients in (19) contain the functions A, C1 and their derivatives; however

it can be integrated in general. On integrating (19) we can write

B =
A′C

3/2
1

A4[
∫

Idt+ g(r)]
, (20)
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where g(r) is a function of integration and for convenience we have defined

I = −7

2

C
1/2
1 ȦĊ1

A5
+ 5

Ȧ2C
3/2
1

A6
+

C̈1C
1/2
1

2A4
− ÄC

3/2
1

A5
+

Ċ1
2

4C
1/2
1 A4

+
A2

4C
1/2
1

. (21)

Therefore the functions

A = A(t, r), (22a)

B =
A′C

3/2
1

A4[
∫

Idt+ g(r)]
, (22b)

Y =
C1

A2
, (22c)

satisfy the junction condition (11). The model (22) is an exact solution to the boundary

condition (10). Note that the gravitational potential A(t, r) is an arbitrary function in

this class of solution. Once A is specified, together with the integration constants C1,

then an explicit form for I can be determined. Then the metric functions A,B and Y

can be expressed in closed form in terms of elementary or special functions. The choice

for A should be made on physical grounds.

4.3 Inhomogeneous Riccati equation

Note that equation (11) has the form of an inhomogeneous Riccati equation if we set

Ẏ ′

Y ′
− A′

A

Ẏ

Y ′
= 0. (23)

Integrating this equation we get

A = Ẏ α(t), (24)

where α(t) is a function of integration. In this case (11) becomes

Ḃ =

[

Ẏ (1 + α2)

2αY Y ′
− α̇

α2Y ′

]

B2 −
[

Ẏ ′α+
Ẏ Y ′α

2Y

]

. (25)

This is an inhomogenous Riccati equation which is difficult to analyse in general. How-

ever we shall show that it is possible to integrate this equation by placing restrictions

on the functions α and Y .

If we take α to be a real constant and Y to be the separable function

Y (t, r) = K(r)C(t), (26)

where K(r) and C(t) are arbitrary functions of r and t respectively, then equation (25)

becomes

Ḃ =
(1 + α2)

2αK ′

Ċ

C2
B2 − 3

2
αK ′Ċ. (27)
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The Riccati equation (27) is not in standard form. Consequently we introduce the

transformation

B = wC (28)

to obtain
[

2αK ′

(1 + α2)w2 − 2αK ′w − 3α2K ′2

]

ẇ =
Ċ

C
. (29)

The advantage of the form (29) is that it is a separable equation in the variables w

and C. Equation (29) can be integrated if the constant α is specified. To demonstrate

a simple exact solution we take α = −2. Then (29) can be written as

ẇ

(5w − 6K ′)(w + 2K ′)
= − 1

4K ′

Ċ

C
. (30)

On integrating the above equation we obtain

w =
2K ′[3C4 + f(r)]

5C4 − f(r)
, (31)

where f(r) is a function of integration. The metric function B then follows since

B = wC.

Therefore we have generated a new solution to the inhomogenous Riccati equation

(25). The form of the solution is given by

A = −2KĊ, (32a)

B =
2K ′C[3C4 + f(r)]

5C4 − f(r)
, (32b)

Y = KC. (32c)

The form of the solution (32a)-(32c) is particularly simple and does not involve further

integration. The functions C,K and f are arbitrary; the physics of a specific model

investigated will determine their explicit form. It is remarkable that the explicit so-

lution (32a)-(32c) can be found for the boundary condition (10) in this case; Riccati

equations are difficult to solve and only limited classes of solution are known to exist.

5 Example

The simple forms of the solutions found this paper make it possible to study the physical

behaviour of the model. In this section we briefly consider the physical features of the

solution generated in Section 4.3. For the gravitational potentials obtained in (32a)-

(32c), we take C(t) = t2, K(r) = r and f(r) = k, where k is a real constant. For these
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values the kinematical quantities become

u̇a =

(

0,
[5t̃− 1]2

4r[3t̃+ 1]2
√
kt̃

, 0, 0

)

, (33a)

Θ =
[3 + 26t̃− 45t̃2]

2r[−1 + 2t̃+ 15t̃2](kt̃)
1

4

, (33b)

σ =
16t̃

3r[1− 2t̃− 15t̃2](kt̃)
1

4

, (33c)

where we have set t̃ = t8/k for convenience. From (33a)-(33c) we observe that the

acceleration u̇a, the expansion Θ and the magnitude of the shear scalar are nonzero.

These quantities remain finite in the interior apart from the stellar centre. Also note

that in the limiting case as t → ∞ the acceleration u̇a → 0 the shear scalar σ → 0

and expansion Θ → 0. As the model evolves for large time the kinematical quantities

grow progressively smaller. From the forms of u̇a and Θ given above we observe that

the acceleration decreases more rapidly than the expansion for large time.

The matter variables become

ρ =

[

−3− 43t̃+ 15t̃2 + 95t̃3
]

2r2[3t̃+ 1]2[5t̃− 1]
√
kt̃

, (34a)

pr =
1

4r2
√
kt̃

[

3[5t̃− 1]2

[3t̃+ 1]2
− 5

]

, (34b)

pt =
4[−13

k
− 45t̃− 95t̃2 + 25t̃3]

r2k[1− 2t̃− 15t̃2]2
, (34c)

q =
[1 + 25t̃− 165t̃2 + 75t̃3]

4r2[3t̃+ 1]3(kt̃)
3

4

. (34d)

From (34a)-(34d) we observe that the energy density ρ, radial pressure pr, tangential

pressure pt and heat flux q are continuous in the stellar interior, apart from the centre.

At later times as t → ∞ we note that q → 0 so that the heat flux is radiated away during

the process of gravitational collapse. It is interesting to see that the energy density

ρ, radial pressure pr, the tangential pressure pt and the heat flux q are proportional

to r−2, and are decreasing functions as we approach the boundary of the star. The

behaviour that ρ ∝ r−2 is of physical importance. It is interesting to observe that this

property is also present in Newtonian isothermal spheres and relativistic isothermal

cosmological models as pointed out by Saslaw et al 21.

A qualitative analysis of the matter variables, energy conditions, and stability is

difficult to achieve for the interior matter distribution. However it is possible to gen-

erate graphical plots which indicate physical viability. In Fig. 1-3 we have plotted the

energy density ρ, the radial pressure pr and the tangential pressure pt. We observe

that ρ > 0, pr > 0 and pt > 0. In addition we have the behaviour ρ′ < 0 and p′r < 0 so

10



that ρ and p are decreasing functions outwards from the centre to the stellar surface.

For fixed values of the radial coordinate it is possible to plot the behaviour of

Z = (ρ+ pr)
2 − 4q2 (35)

Y = ρ− pr − 2pt + [(ρ+ pr)
2 − 4q2]

1

2 (36)

Typical behaviour of these quantities are represented in Fig. 4 and Fig. 5 respectively.

These graphs show that Z > 0 and Y > 0. The behaviour exhibited in this physical

analysis indicates that the weak, strong and dominant conditions are satisfied in interior

points away from the centre. Also note from Fig. 6 that the speed of sound is less than

the speed of light so that causality is not violated.

Next we briefly consider the relativistic effect of the causal temperature in our

model. The Maxwell-Cattaneo heat transport equation, in the absence of rotation and

viscous stresses is given by

τh b
a q̇b + qa = −κ

(

h b
a ∇bT + T u̇a

)

, (37)

where τ is the relaxation time, κ is the thermal conductivity, hab = gab + uaub projects

into the comoving rest space and T is the local causal temperature. Equation (37) re-

duces to the acausal Fourier heat transport equation when τ = 0. The causal transport

equation (37) can be written as

T (t, r) = − 1

κA

∫

[

τ ˙(qB)B + AqB2
]

dr (38)

for the metric (1). Martinez22, Govender et al 23 and Di Prisco et al 24 have shown that

the relaxation time τ has a major effect on the thermal evolution, particularly in the

latter stages of collapse. Rajah and Maharaj12 and Naidu et al 11 showed that in the

presence of shear stress, the relaxation time decreases as the collapse proceeds and the

central temperature increases. For our case, (38) becomes

T (t̃, r) =
τ [−1 + 15t̃− 315t̃2 + 45t̃3]

κr2[3t̃ + 1]2[5t̃− 1]
√
kt̃

+
[1 + 30t̃− 15t̃2(kt̃)

1

4 ] ln[r]

κr[−1 + 2t̃+ 15t̃2](kt̃)
1

4

+ h(t), (39)

where h(t) is a function of integration and we set τ and κ as constant. When τ = 0, we

can regain the acausal (Eckart) temperature from (39). It is possible to plot the causal

and acausal temperatures against the radial coordinate. In Fig. 7 the temperature

profiles are similar to the curves in Rajah and Maharaj12. The temperature is a

decreasing function from the centre to the boundary of the star in both the causal and

acausal curves. The inclusion of particle acceleration in our model may contribute to

11
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Figure 1: Density
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the more rapid decrease of temperature from the core to the boundary of the star. This

may be applicable to phases of collapse where there is rapid expansion and cooling of

the outer layers of the stellar fluid. As in the Rajah and Maharaj12 model it is clear

that the causal temperature is greater than the acausal temperature throughout the

stellar interior.

6 Discussion

In summary, we considered the general case of a spherically symmetric radiative star

undergoing gravitational collapse when the interior spacetime consists of an accelerat-

ing, expanding and shearing matter distribution. The junction condition is rewritten
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so that it can be considered as a first order equation in the potential B(t, r). It is

then possible to consider the junction condition as a standard differential equation: a

linear equation, a Bernoulli equation and a Riccati equation. The linear and Bernoulli

equations are solved in general. The Riccati equation can only be solved for a par-

ticular value of the integration constant. Therefore three new classes of solutions to

the boundary condition have been found. For a particular metric, corresponding to

the inhomogenous Riccati equation, it is possible to obtain forms for the kinematical

quantities and matter variables. It is then possible to indicate the behaviour of the

model for large values of time.
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