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Abstract

We study the behaviour of a radiating star when the interior expanding, shearing fluid

particles are traveling in geodesic motion. We demonstrate that it is possible to obtain

new classes of exact solutions in terms of elementary functions without assuming a

separable form for the gravitational potentials or initially fixing the temporal evolution

of the model unlike earlier treatments. A systematic approach enables us to write the

junction condition as a Riccati equation which under particular conditions may be

transformed into a separable equation. New classes of solutions are generated which

allow for mixed spatial and temporal dependence in the metric functions. We regain

particular models found previously from our general classes of solutions.

1 Introduction

In an astrophysical environment, it is likely that a star emits radiation and particles

in the process of gravitational collapse. In this situation, the heat flow in the interior

of a star should not be neglected; the interior spacetime of the collapsing radiating

star should match to the exterior spacetime described by the Vaidya1 solution. Exact

models of relativistic radiating stars are important for the investigation of the cosmic

censorship hypothesis and gravitational collapse2,3. Santos4 formulated the junction

conditions for shear-free collapse, matching the interior metric with the exterior Vaidya

metric at the boundary of the star, which made it possible to generate exact models.
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This treatment enabled us to investigate physical features such as surface luminosity,

dynamical stability, relaxation effects, particle production at the surface and temper-

ature profiles for radiating stars in general relativity. De Oliviera et al 5 proposed a

radiating model of an initial interior static configuration leading to slow gravitational

collapse. It had been shown earlier that the slowest possible collapse arises in the case

of shear-free fluid interiors6. In a recent treatment Herrera et al 7 proposed a relativistic

radiating model with a vanishing Weyl tensor, in a first order approximation, without

solving the junction condition exactly. Then Maharaj and Govender8 and Herrera et

al 9 solved the relevant junction condition exactly, and generated classes of solutions

in terms of elementary functions which contain the Friedmann dust solution as special

case. Later Misthry et al 10 obtained several other classes of solution by transforming

the junction condition to the form of an Abel equation of the first kind. These exact

models have proved to be useful in analysing the relativistic behaviour of a collapsing

objects in the stellar scenario.

Another useful approach in studying the effects of dissipation is due to Kolassis et

al 11 in which the fluid particles are restricted to travel along geodesics. In the absence

of heat flow, the interior Friedmann dust solution is regained. This particular exact

solution formed the basis for many investigations involving physical features such as

the rate of collapse, surface luminosity and temperature profiles. The physical inves-

tigations include the analytic model of radiating gravitational collapse in a spherical

geometry with neutrino flux by Grammenos and Kolassis12, the model describing re-

alistic astrophysical processes with heat flux by Tomimura and Nunes13, and models

undergoing gravitational collapse with heat flow which serves as a possible mechanism

for gamma-ray bursts by Zhe et al 14. Herrera et al 15 investigated geodesic fluid spheres

in coordinates which are not comoving in the presence of anisotropic pressures. Goven-

der et al 16 demonstrated that the temperature in casual thermodynamics for particles

traveling on geodesics produces higher central values than the Eckart theory. The first

exact solution, that we are aware of, with nonzero shear was obtained by Naidu et al 17,

considering geodesic motion of fluid particles; later Rajah and Maharaj18 obtained two

classes of nonsingular solutions by solving a Riccati equation. Note that the geodesic

condition arises in several other astrophysical situations including Euclidean stars, with

the real and proper radius equal, in the absence of dissipation19.

In this paper we attempt to extend the previous treatments of Naidu et al 17 and

Rajah and Maharaj18 through a systematic approach by studying the fundamental

junction condition. Our intention is to show that the nonlinear boundary condition

may be analysed mathematically to produce an infinite classes of exact solutions. In

Section 2, we present the geodesic model governing the description of a radiating star

using the Einstein field equations together with the junction conditions in the presence
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of anisotropic pressure. We show that it is possible to transform the junction condition

into a separable equation by placing restrictions on one of the gravitational potentials.

Two new classes of solutions are obtained in terms of arbitrary functions of the radial

coordinate and we regain the models found in the past for particular choices of arbitrary

functions in Section 3. In Section 4, we discuss some physical aspects of the models

generated.

2 The model

In the context of general relativity, the form for the interior space time of a spherically

symmetric collapsing star with nonzero shear when the fluid trajectories are geodesics

is given by the line metric

ds2 = −dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2), (1)

where B and Y are functions of both the temporal coordinate t and radial coordinate

r. The fluid four-velocity vector u is given by ua = δa0 which is comoving. For the line

element (1), the four-acceleration u̇a, the expansion scalar Θ and the magnitude of the

shear scalar σ are given by

u̇a = 0, (2a)

Θ =
Ḃ

B
+ 2

Ẏ

Y
, (2b)

σ =
1

3

(

Ẏ

Y
− Ḃ

B

)

, (2c)

respectively, and dots denote the differentiation with respect to t. The energy momen-

tum tensor for the interior matter distribution is described by

Tab = (ρ+ p)uaub + pgab + πab + qaub + qbua, (3)

where p is the isotropic pressure, ρ is the energy density of the fluid, πab is the stress

tensor and qa is the heat flux vector. Anisotropy plays a significant role in gravitational

collapse and affects the mass, luminosity and stability of relativistic spheres; these

features have been highlighted in the treatments of Chan20 and Herrera and Santos21.

The stress tensor has the form

πab = (pr − pt)

(

nanb −
1

3
hab

)

, (4)

where pr is the radial pressure, pt is the tangential pressure and n is a unit radial vector

given by na = 1

B
δa1 . The isotropic pressure is given by

p =
1

3
(pr + 2pt) (5)
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in terms of the radial pressure and the tangential pressure. For the line element (1)

and matter distribution (3) the Einstein field equations become

ρ = 2
Ḃ

B

Ẏ

Y
+

1

Y 2
+

Ẏ 2

Y 2
− 1

B2

(

2
Y ′′

Y
+

Y ′2

Y 2
− 2

B′

B

Y ′

Y

)

, (6a)

pr = −2
Ÿ

Y
− Ẏ 2

Y 2
− 1

Y 2
+

1

B2

Y ′2

Y 2
, (6b)

pt = −
(

B̈

B
+

Ḃ

B

Ẏ

Y
+

Ÿ

Y

)

+
1

B2

(

Y ′′

Y
− B′

B

Y ′

Y

)

, (6c)

q = − 2

B2

(

Ḃ

B

Y ′

Y
− Ẏ ′

Y

)

, (6d)

where the heat flux qa = (0, q, 0, 0) is radially directed and primes denote the dif-

ferentiation with respect to r. The system of equations (6a)-(6d) governs the most

general situation in describing geodesic matter distributions in a spherically symmetric

gravitational field. These equations describe the gravitational interaction of a shearing

matter distribution with heat flux and anisotropic pressure for particles traveling along

geodesics. From (6a)-(6d), we observe that if the gravitational potentials B(t, r) and

Y (t, r) are specified then the expressions for the matter variables ρ, pr, pt and q follow

by simple substitution.

The Vaidya exterior spacetime of radiating star is given by

ds2 = −
(

1− 2m(v)

R

)

dv2 − 2dvdR+R2(dθ2 + sin2 θdφ2), (7)

where m(v) denotes the mass of the fluid as measured by an observer at infinity. The

line element (7) is utilized to describe incoherent null radiation which flows in the radial

direction relative to the hypersurface Σ which denotes the boundary of the star. The

matching of the interior spacetime (1) with the exterior spacetime (7) generate the set

of junction conditions on the hypersurface Σ given by

dt =

(

1− 2m

RΣ

+ 2
dRΣ

dv

)
1

2

dv, (8a)

Y (RΣ, t) = RΣ(v), (8b)

m(v)Σ =

[

Y

2

(

1 + Ẏ 2 − Y ′2

B2

)]

Σ

, (8c)

(pr)Σ = (qB)Σ. (8d)

The nonvanishing of the radial pressure at the boundary Σ is reflected in equation (8d).

Equation (8d) is an additional constraint which has to be satisfied together with the

system of equations (6a)-(6d).
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The junction condition (8d) in the case of shear-free spacetimes was first derived by

Santos4, and later it was extended by Glass22 to incorporate spacetimes with nonzero

shear. On substituting (6b) and (6d) in (8d) we obtain

2Y Ÿ + Ẏ 2 − Y ′2

B2
+

2

B
Y Ẏ ′ − 2

Ḃ

B2
Y Y ′ + 1 = 0 (9)

which has to satisfied on Σ. Equation (9) governs the gravitational behaviour of the

radiating anisotropic star with nonzero shear and no acceleration. As equation (9)

is highly nonlinear, it is difficult to solve without some simplifying assumption. This

equation comprises two unknown functions B(t, r) and Y (t, r). To generate a solution

we have to specify one of the functions so that the resulting equation is tractable.

3 New exact solutions

For convenience we rewrite equation (9) in the form of the Riccati equation in the

gravitational potential B as follows

Ḃ =

[

Ÿ

Y ′
+

Ẏ 2

2Y Y ′
+

1

2Y Y ′

]

B2 +
Ẏ ′

Y ′
B − Y ′

2Y
. (10)

Equation (10) was analyzed by Nogueira and Chan23 who obtained approximate so-

lutions using numerical techniques. To properly describe the physical features of a

radiating relativistic star exact solutions are necessary, preferably written in terms of

elementary functions. An exact solution was found by Naidu et al 17 which was singular

at the stellar centre. A new class of solutions was established by Rajah and Maharaj18,

which contain the Naidu et al 17 models, in which the singularities at the centre were

shown to be avoidable.

The Riccati equation (10), which has to be satisfied on the stellar boundary Σ, is

highly nonlinear and difficult to solve. Rajah and Maharaj18 obtained solutions in an ad

hoc fashion by assuming that the gravitational potential Y (t, r) is a separable function

and specifying the temporal evolution of the model. In this paper we demonstrate that

it is possible to find new exact solutions systematically without assuming separable

forms for Y (t, r) and not fixing the temporal evolution of the model a priori. If we

introduce the transformation

B = ZY ′ (11)

then equation (10) becomes

Ż =
1

2Y

[

FZ2 − 1
]

, (12)

where we have set

F = 2Y Ÿ + Ẏ 2 + 1.
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We observe that equation (12) becomes a separable equation in Z and t, and therefore

integrable, if we let F be a constant or a function of r only. In other word, (12) is

integrable as long as F is independent of t. We emphasize that in this approach we

have not made any assumption about the separability of the metric coefficients B(t, r)

and Y (t, r) or restricted the t−dependence. We demonstrate that this approach leads

to two new classes of solutions in the following sections.

3.1 Analytic solution I

If we set F = 1 then the function Y is given by

Y (r, t) = [R1(r)t+R2(r)]
2/3, (13)

where R1(r) and R2(r) are arbitrary functions of r. For this case equation (12) becomes

Ż =
1

2[R1(r)t+R2(r)]2/3
[

Z2 − 1
]

. (14)

On integrating (14) we obtain

Z =
1 + f(r) exp

[

3(R1t+R2)
1/3/R1

]

1− f(r) exp [3(R1t+R2)1/3/R1]
, (15)

where f(r) is a function of integration. Hence from (11), (13) and (15) we get

B =
2

3

[

1 + f(r) exp
[

3(R1t+R2)
1/3/R1

]

1− f(r) exp [3(R1t +R2)1/3/R1]

]

[R′
1t+R′

2]

[R1t+R2]1/3
. (16)

Therefore the line element (1) takes the particular form

ds2 = −dt2 +
4

9

[

1 + f(r) exp
[

3(R1t +R2)
1/3/R1

]

1− f(r) exp [3(R1t +R2)1/3/R1]

]2

[R′
1t +R′

2]
2

[R1t +R2]2/3
dr2

+[R1(r)t+R2(r)]
4/3(dθ2 + sin2 θdφ2), (17)

The line element (17) is given in terms of arbitrary functions R1(r), R2(r) and f(r) so

that it is possible to generate infinite number of solutions for different choices of these

functions. Observe that if we set

R1 = 0, R2 = r3/2

then the equivalent of (17) is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θdφ2)

which is the flat Minkowski spacetime. As the curvature then vanishes we require

R1 6= 0 and the t-dependence in Y is maintained.
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It is interesting to see that for particular forms of the arbitrary functions we regain

models found previously. If we set

R1 = R3/2, R2 = aR3/2

then the line element (17) reduces to

ds2 = −dt2+(t+a)4/3







R′2

[

1 + f(r) exp
[

3(t + a)1/3/R
]

1− f(r) exp [3(t+ a)1/3/R]

]2

dr2 +R2(dθ2 + sin2 θdφ2)







.

(18)

The line element (18) corresponds to the first category of the Rajah and Maharaj18

models for an anisotropic radiating star with shear. Furthermore note that if we set

a = 0 and R = r then (18) reduces to

ds2 = −dt2 + t4/3







[

1 + f(r) exp
[

3t1/3/r
]

1− f(r) exp [3t1/3/r]

]2

dr2 +R2(dθ2 + sin2 θdφ2)







. (19)

The metric (19) was first found by Naidu et al 17 in their analysis of pressure anisotropy

and heat dissipation in a spherically symmetric radiating star undergoing gravitational

collapse. Note that when

R1 = r3/2, R2 = 0, f(r) = 0

the line element (17) takes on the simple form

ds2 = −dt2 + t4/3
[

dr2 + r2(dθ2 + sin2 θdφ2)
]

. (20)

The line element (20) corresponds to the Friedmann metric when the fluid is in the

form of dust with vanishing heat flux.

3.2 Analytic solution II

If we set F = 1 +R2
1(r) then the function Y is given by

Y (r, t) = R1(r)t+R2(r), (21)

where R1(r) and R2(r) are functions of r only. For this case equation (12) becomes

Ż =
[R2

1 + 1]

2[R1t+R2]

[

Z2 − 1

[R2
1 + 1]

]

. (22)

The solution of (22) can be written as

Z =
1

√

R2
1 + 1

[

1 + g(r)[R1t+R2]
√

R2

1
+1/R1

1− g(r)[R1t+R2]
√

R2

1
+1/R1

]

, (23)
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where g(r) is the function of integration. Hence from (11), (21) and (23) we get

B =
1

√

R2
1 + 1

[

1 + g(r)[R1t+R2]
√

R2

1
+1/R1

1− g(r)[R1t+R2]
√

R2

1
+1/R1

]

[R′
1t+R′

2]. (24)

Therefore the line element (1) takes the particular form

ds2 = −dt2 +
1

[R2
1 + 1]

[

1 + g(r)[R1t +R2]
√

R2

1
+1/R1

1− g(r)[R1t+R2]
√

R2

1
+1/R1

]2

[R′
1t+R′

2]
2dr2

+[R1(r)t+R2(r)]
2(dθ2 + sin2 θdφ2) (25)

in terms of arbitrary functions R1(r), R2(r) and g(r). Therefore it is again possible

to generate an infinite number of solutions to (9). As in §3.1 we cannot set R1 = 0

became the Minkowski spacetime is results.

The new class of solutions given above does contain previously known models. Note

that when

R1 = R, R2 = aR

the line element (25) reduces to

ds2 = −dt2+(t+a)2







R′2

[R2 + 1]

[

1 + h(r)[t+ a]
√
R2+1/R

1− h(r)[t + a]
√
R2+1/R

]2

dr2 +R2(dθ2 + sin2 θdφ2)







,

(26)

where we have defined the new arbitrary function h(r) = g(r)R
√
R2+1/R. The line ele-

ment (26) corresponds to the second category of the Rajah and Maharaj18 anisotropic

radiating stars with shear. Such solutions are difficult to interpret but could play a

role in gravitational collapse for strong fields.

4 Discussion

The simple form of the exact solutions that have been generated in our treatment

make it possible to study the physical features of the model such as luminosity, rate

of collapse, particle production, neutrino flux and temperature profiles. In particular

explicit forms for the causal temperature can be found utilizing the Maxwell-Catteneo

heat transport equation

τh b
a q̇b + qa = −κ

(

h b
a ∇bT + T u̇a

)

. (27)

This has been done for special cases by Naidu et al 17 and Rajah and Maharaj18.

The causal temperature is well behaved in the stellar interior, in particular the causal

temperature is everywhere greater than the acausal temperature. Other choices of the
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metric functions in our new classes of solutions (17) and (25) generate similar behaviour

and highlight the role of inhomogeneity in dissipative processes. Consequently our new

general class of exact radiating stars is physically reasonable.

We have generated a new class of stellar models with shear and expansion in geodesic

motion. All solutions found previously arise as special cases in our treatment. Previous

analysis were ad hoc and effectively required that one of the metric functions should

be a separable function. The resulting Riccati equation could then be solved. In this

work, we did not assume separability of the metric functions and did not initially

fix the temporal evolution of the model which is different from earlier treatments of

this problem. Our more general approach enabled us to solve the Riccati equation

systematically; we found that the Riccati equation could be transformed to a separable

equation. Two classes of exact solutions were explicitly demonstrated to the junction

condition. These were shown to contain the Naidu et al 17 and Rajah and Maharaj18

metrics. The fundamental reason that new solutions are possible in that we have

relaxed the condition of separability in the metric function Y (t, r).
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