EFFECTS OF PLANT SPACING ON PRODUCTIVITY AND NUTRIENT COMPOSITION OF

HYBRID NAPIER GRASS-CO3

(Pennisetum perpureum x Pennisetum americarnum)
IN THE EUSL LIVESTOCK FARM

A.W. THILANKA AMALI

DEPARTMENT OF ANIMAL SCIENCE
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRI LANKA
2019

ABSTRACT

Feeding standards of ruminant livestock could be significantly enhanced through the cultivation of improved quality forages which are suitable for different agroclimatic conditions of the country. Hybrid Napier cultivars CO3 is the most popular among ruminant rearing farmers. Hence, an experiment was carried out to assess the growth parameters, herbage yield and chemical composition of hybrid Napier CO3 (Pennisetum perpureum X Pennisetum americarnum) at the Livestock farm of Department of Animal Science, Faculty of Agriculture, Eastern University Sri Lanka.

The experiment was conducted during the period of February to April 2019 with four different spacing such as 50 cm x 25 cm, 50 cm x 45 cm, 50 cm x 65 cm and 50 cm x 85 cm with five blocks under randomized complete block design. Growth parameters (plant height, leaf length, leaf width number of tillers per clump, leaf area) were measured at two-week intervals from 4th week up to the 8th week. In addition, productivity of fodders such as yield and proximate composition of the forage also measured.

Collected data were subjected to Analysis of Variance (ANOVA). The means were separated using Duncra's multiple range test at 0.05 significance level. Results obtained indicated that productivity of CO3 is superior in 50 cm x 45 cm spacing of growth under the conditions in Eastern University Livestock farm, and resulted the highest (p<0.05) dry matter yield of 56.19 g per plant in 50 cm x 45 cm spacing. And lowest dry matter yield of 38.49 g showed 50 cm x 85 cm spacing. In terms of chemical composition 50 cm x 45 cm spacing showed highest total ash content (16.68%), crude fat content (5.94%) and crude fiber content (33.13%) on dry matter basis.

TABLE OF CONTENTS

ABSTRACT	I
ACKNOWLEDGEMENT	II
TABLE OF CONTENTS	IV
LIST OF TABLES	
LIST OF FIGURES	VII
ABBREVIATIONS	VIII
CHAPTER 01	9
1. INTRODUCTION	9
CHAPTER 02	13
2. LITERATURE REVIEW	13
2.1.1. Growth characters and fodder production behavior	
2.1.2. Cutting interval	
2.1.3. Inter cropping with fodder grass	
2.1.4 Plant density	
2.1.5 Planting material and the productivity	
2.1.6 Fertilizers	
2.2. Cultivars of Hybrid Napier	24
2.3. Spacing	
2.4. Nutritive value	
2.5 How to affect livestock production	
CHAPTER 03	
3. MATERIALS AND METHODS	31
3.1 General details	
3.1.1 Experimental site	
3.1.2 Weather	
3.2 Experiment	32
3.3 Experimental design	32
3.4 Field operations	
3.5 Experimental details	
3.6 parameters	
Total Dry mater content	
3.6.1 Biometric observations	
	26

3.8 Forage yield	37
3.9 Nutritive value and quality	37
3.9.1 Procedure of Dry matter and ash Determination	38
3.9.2 Determination of crude fat	39
3.9.3 Procedure of crude fiber determinations	40
3.10 Data analysis	40
CHAPTER 04	41
4. RESULTS AND DISCUSSION	41
4.1. Growth parameters of Hybrid Napier	41
4.1.1. Plant height	41
4.1.2. Leaf lengt's	42
4.1.3. Leaf width (cm)	43
4.1.4. Leaf Area Index	44
4.1.5. Number of tillers per clump	44
4.2. Productivity of Hybrid Napier	45
4.2.1. Fresh weight of grass	45
4.2.2. Dry matter yield of grass	
4.2.3. Proximate composition of Hybrid grass	47
4.3.1. Dry matter content	47
4.3.2. Crude fiber	48
4.3.3. Crude fat	49
4.3.4. Total ash	49
CHAPTER 05	
CONCLUSION	50
REFERENCES	51
ANNEXURE	