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Exact models for isotropic matter
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Abstract. We study the Einstein-Maxwell system of equations in spherically

symmetric gravitational fields for static interior spacetimes. The condition for pressure

isotropy is reduced to a recurrence equation with variable, rational coefficients. We

demonstrate that this difference equation can be solved in general using mathematical

induction. Consequently we can find an explicit exact solution to the Einstein-

Maxwell field equations. The metric functions, energy density, pressure and the electric

field intensity can be found explicitly. Our result contains models found previously

including the neutron star model of Durgapal and Bannerji. By placing restrictions

on parameters arising in the general series we show that the series terminate and

there exist two linearly independent solutions. Consequently it is possible to find

exact solutions in terms of elementary functions, namely polynomials and algebraic

functions.
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1. Introduction

The first spacetime studied, modelling the interior of the relativistic sphere with uniform

energy density, is the Schwarzschild interior solution which was found about ninety years

ago. Since then considerable time and energy has been spent in finding exact solutions to

the Einstein field equations for the interior spacetime that matches to the Schwarzschild

exterior. The principal reason for this activity is that these solutions to the field

equations for spherically symmetric gravitational fields are necessary in the description of

compact objects in relativistic astrophysics. The models generated are used to describe

relativistic spheres with strong gravitational fields as is the case in neutron stars. The

detailed treatments of Stephani et al [1] and Delgaty and Lake [2] for static, spherically

symmetric models provide a comprehensive collection of interior spacetimes, satisfying

a variety of criteria for physical admissability, that match to the Schwarzschild exterior

spacetime. It is important to note that only a few of these solutions correspond to

nonsingular gravitational potentials with a physically acceptable energy momentum

tensor and a barotropic equation of state. A sample of the exact solutions to the field

equations, which satisfy all the physical requirements for a relativistic star, is contained

in the models of the Durgapal and Bannerji [3], Durgapal and Fuloria [4], Finch and

Skea [5], Ivanov [6], Lake [7], Maharaj and Leach [8] and Sharma and Mukherjee [9],

amongst others.

In the past most of the solutions found have been obtained in an ad hoc manner.

We expect that a more systematic and formal study, such as the treatment of Maharaj

and Chaisi [10] for anisotropic matter, should lead to new classes of solution. Clearly

there is a need to systematically study the mathematical properties and features of the

underlying nonlinear differential equations. The analysis of John [11] indicates that

reducing the condition of pressure isotropy to a recurrence relation with real, rational

coefficients leads to new mathematical and physical insights in the Einstein equations for

neutral matter. We attempt to perform similar analysis here in the coupled Einstein-

Maxwell equations for charged matter. In this more general case we find that the

condition of pressure isotropy leads to a new recurrence relation which can be solved in

general. The Einstein-Maxwell system is important in the description of a relativistic

star in the presence of an electromagnetic field. It is interesting to observe that, in the

presence of charge, the gravitational collapse of a spherically symmetric distribution

of matter to a point singularity may be avoided. In this situation the gravitational

attraction is counterbalanced by the repulsive Coulombian force in addition to the

pressure gradient. Consequently the Einstein-Maxwell system, for a charged star, has

attracted considerable attention in various physical investigations including Mukherjee

[12] and Sharma et al [13].

In this paper we seek new exact solutions to the Einstein field equations, using

a systematic series analysis, which may be used to describe the interior gravitational

profile of a relativistic sphere. The approach produces a number of difference equations

which we demonstrate can be solved from first principles. In section 2 we first express
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the Einstein equations for neutral matter and the Einstein-Maxwell system for charged

matter as equivalent sets of differential equations utilising a transformation due to

Durgapal and Bannerji [3]. We choose particular forms for one of the gravitational

potentials and the the electric field intensity, which we believe has not been studied

before. This enables us to simplify the condition of pressure isotropy in section 3 to

a second order linear equation in the remaining gravitational potential. We assume

a series form for this function which yields a difference equation which we manage to

solve using mathematical induction. It is then possible to exhibit a new exact solution

to the Einstein-Maxwell field equations which can be written explicitly as shown in

section 4. We consider two particular cases in section 5 which contain exact solutions

found previously. In section 6 we demonstrate that it is possible to find two linearly

independent solutions to the condition of pressure isotropy in terms of elementary

functions by placing restrictions on parameters, that appear in the general solution,

thereby permitting the series to terminate. In section 7 we express the general solution

of the Einstein Maxwell system in terms of polynomials and algebraic functions. We

briefly discuss some of the physical properties of our solutions in section 8.

2. Field equations

On physical grounds the gravitational field should be static and spherically symmetric

for describing the internal structure of a dense compact relativistic sphere. Consequently

we can find coordinates (t, r, θ, φ) such that the line element is of the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

For neutral perfect fluids the Einstein field equations can be expressed as follows

1

r2
[r(1− e−2λ)]′ = ρ (2a)

−
1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = p (2b)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ −

λ′

r

)

= p (2c)

for the spherically symmetric line element (1). The energy density ρ and the pressure

p are measured relative to the comoving fluid 4-velocity ua = e−νδa0 and primes denote

differentiation with respect to the radial coordinate r. In the field equations (2a)-(2c)

we are using units where the coupling constant 8πG
c4

= 1 and the speed of light c = 1.

The system of equations (2a)-(2c) governs the behaviour of the gravitational field for a

neutral perfect fluid. A different but equivalent form of the field equations is obtained

if we define a new independent variable x, and new functions y and Z, as follows

A2y2(x) = e2ν(r), Z(x) = e−2λ(r), x = Cr2 (3)

so that the line element (1) becomes

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x

C
(dθ2 + sin2 θdφ2).
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In the equations (3) the quantities A and C are arbitrary constants. Under the

transformation (3) the system (2a)-(2c) has the form

1− Z

x
− 2Ż =

ρ

C
(4a)

4Z
ẏ

y
+

Z − 1

x
=

p

C
(4b)

4Zx2ÿ + 2Żx2ẏ + (Żx− Z + 1)y = 0 (4c)

where the dots denotes differentiation with respect to the variable x. The set (4a)-(4c)

is a system of three equations in the four unknowns ρ, p, y and Z.

A generalisation of the system (2a)-(2c) is the Einstein-Maxwell field equations

given by

1

r2

[

r(1− e−2λ)
]

′

= ρ+
1

2
E2 (5a)

−
1

r2

(

1− e−2λ
)

+
2ν ′

r
e−2λ = p−

1

2
E2 (5b)

e−2λ

(

ν ′′ + ν ′2 +
ν ′

r
− ν ′λ′ −

λ′

r

)

= p+
1

2
E2 (5c)

σ =
1

r2
e−λ(r2E)′. (5d)

where E is the electric field intensity and σ is the charge density. When the electric field

E = 0 then the Einstein-Maxwell equations (5a)-(5d) reduce to the Einstein equations

(2a)-(2c) for neutral matter. The system of equations (5a)-(5d) governs the behaviour

of the gravitational field for a charged perfect fluid. If we use the transformation (3)

then the Einstein-Maxwell system (5a)-(5d) becomes

1− Z

x
− 2Ż =

ρ

C
+

E2

2C
(6a)

4Z
ẏ

y
+

Z − 1

x
=

p

C
−

E2

2C
(6b)

4Zx2ÿ + 2Żx2ẏ +

(

Żx− Z + 1−
E2x

C

)

y = 0 (6c)

σ2

C
=

4Z

x

(

xĖ + E
)2

(6d)

which may be easier to integrate in certain situations.

3. Specifying Z and E

We examine a particular form of the Einstein-Maxwell field equations (6a)-(6d) by

making explicit choices for the gravitational potential Z and the electric field intensity

E. The system (6a)-(6d) comprises four equations in six unknowns Z, y, ρ, p, E and

σ. By specifying the gravitational potential Z and electric field intensity E we are
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in a position to integrate the condition of pressure isotropy (6c). The solution of the

Einstein-Maxwell system then follow. We make the choice

Z =
1 + kx

1 + x
(7)

where k is a real constant. In (7) we take k 6= 1. If k = 1 then the metric function

e2λ=1 and the energy density is ρ = −E2

2
. To avoid negative energy densities, which

are not physical for barotropic stars, we consequently take k 6= 1. The choice (7)

was also made by Maharaj and Mkhwanazi [14] and in their analysis of uncharged

stars. Our objective is to confirm that this type of potential is also consistent with

nonvanishing electromagnetic fields. Note that our choice contains, as a special case,

the Durgapal and Bannerji [3] solution, which is widely applied as a relativistic model

for neutral stars. Only the solutions for the cases k = 1
2
and k = −1

2
were documented

previously for the uncharged case when E = 0. Other physically reasonable choices of

the gravitational potential Z are possible; we have chosen the form (7) as it produces

charged and uncharged solutions which are necessary for a realistic model.

Upon substituting (7) in equation (6c) we obtain

4(1 + kx)(1 + x)ÿ + 2(k − 1)ẏ +

(

1− k −
E2(1 + x)2

Cx

)

y = 0. (8)

As the differential equation (8) is difficult to solve we first introduce the transformation

1 + x = KX (9a)

K =
k − 1

k
(9b)

Y (X) = y(x) (9c)

so as to obtain a more convenient form. Substituting (9a)-(9c) in the differential

equation (8) we obtain

4X(1−X)
d2Y

dX2
− 2

dY

dX
+

(

K +
K2(1−K)E2X2

C(KX − 1)

)

Y = 0 (10)

in terms of the new dependent and independent variables Y and X respectively. The

differential equation (10) may be integrated once the electric field E is specified. A

variety of choices for E is possible but only a few are physically reasonable and generate

solutions in closed form. We observe that the particular choice

E2 =
αC

K2(1−K)

KX − 1

X2
(11)

where α is a constant, simplifies (10). The electric field defined in (11) vanishes at the

centre of the star, and remains continuous and bounded in the interior of the star for a

wide range of values of the parameter k. Thus the choice for E is physically reasonable

and it is a useful form to study the gravitational behaviour of charged stars. With the

help of (11) we find that (10) takes the simpler form

4X(1−X)
d2Y

dX2
− 2

dY

dX
+ (K + α)Y = 0. (12)
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This is a special case of the hypergeometric equation. When α = 0 the differential

equation (12) becomes

4X(1−X)
d2Y

dX2
− 2

dY

dX
+KY = 0 (13)

and there is no charge.

4. General series solution

Since (12) is the hypergeometric equation it is not possible to express the general solution

in terms of elementary functions for all K + α. In general the solution will be given

in terms of special functions. The representation of the solution in a simple form is

necessary for a detailed physical analysis. Hence we attempt to obtain a general solution

to the differential equation (12) in series form. Later we show that it is possible to extract

solutions in terms of algebraic functions and polynomials.

Since X = 0 is a regular singular point of the differential equation (12) we can apply

the method of Frobenius about X = 0. We assume that the solution of the differential

equation (12) is of the form

Y =
∞
∑

n=0

cnX
n+r, c0 6= 0 (14)

where cn are the coefficients of the series and r is a constant. For a legitimate solution

we need to determine the coefficients cn as well as the parameter r. Substituting (14)

in the differential equation (12) we obtain

2c0r[2(r − 1)− 1]Xr−1 +
∞
∑

n=0

(2cn+1(n + 1 + r)[2(n+ r)− 1]− cn[4(n + r)(n+ r − 1)− (K + α)])Xn+r = 0. (15)

The coefficients of the various powers of X must vanish. Equating the coefficient of

Xr−1 in (15) to zero we obtain the indicial equation

2c0r[2(r − 1)− 1] = 0.

Since c0 6= 0 we must have r = 0 or r = 3
2
. Equating the coefficient of Xn+r in (15) to

zero we obtain

cn+1 =
4(n+ r)(n+ r − 1)− (K + α)

2(n + 1 + r)[2(n+ r)− 1]
cn, n ≥ 0 (16)

which is the fundamental difference equation governing the structure of the solution.

We can establish a general structure for the coefficients by considering the leading

terms. The coefficients c1, c2, c3, . . .can all be written in terms of the leading coefficient

c0 and we generate the expression

cn+1 =
n
∏

p=0

4(p+ r)(p+ r − 1)− (K + α)

2(p+ 1 + r)[2(p+ r)− 1]
c0 (17)

where the symbol
∏

denotes multiplication. It is possible to establish that the result

(17) holds for all nonnegative integers using the principle of mathematical induction.
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We can now generate two linearly independent solutions, y1 and y2, from (14) and

(17). For the parameter value r = 0 we obtain the first solution

Y1 = c0



1 +
∞
∑

n=0

n
∏

p=0

4p(p− 1)− (K + α)

2(p+ 1)(2p− 1)
Xn+1





y1 = c0



1 +
∞
∑

n=0

n
∏

p=0

4p(p− 1)− (K + α)

2(p+ 1)(2p− 1)

(

1 + x

K

)n+1


 . (18)

For the parameter value r = 3
2
we obtain the second solution

Y2 = c0X
3

2



1 +
∞
∑

n=0

n
∏

p=0

(2p+ 3)(2p+ 1)− (K + α)

(2p+ 5)(2p+ 2)
Xn+1





y2 = c0

(

1 + x

K

)

3

2



1 +
∞
∑

n=0

n
∏

p=0

(2p+ 3)(2p+ 1)− (K + α)

(2p+ 5)(2p+ 2)

(

1 + x

K

)n+1


 . (19)

Thus the general solution to the differential equation (8), for the choice (11), is given

by

y = ay1(x) + by2(x) (20)

where a and b are arbitrary constants, K = k−1
k

and y1 and y2 are given by (18) and

(19) respectively. By inspection it is clear that y1 and y2 are linearly independent

functions. From (6a)-(6d), (18) and (19) the general solution to the Einstein-Maxwell

system becomes

e2λ =
1 + x

1 + kx
(21a)

e2ν = A2y2 (21b)

ρ

C
=

(1− k)(3 + x)

(1 + x)2
−

αkx

2(1 + x)2
(21c)

p

C
= 4

(1 + kx)

(1 + x)

ẏ

y
+

(k − 1)

(1 + x)
+

αkx

2(1 + x)2
(21d)

E2

C
=

αkx

(1 + x)2
(21e)

where y = ay1(x)+by2(x). We believe that (21a)-(21e) is a new solution to the Einstein-

Maxwell field equations.

5. Particular cases

From the Einstein-Maxwell solution (21a)-(21d) we can generate a number of physically

reasonable charged and uncharged models for particular choices of k and α. If we set

α = 0 then

e2λ =
1 + x

1 + kx
(22a)

e2ν = A2y2 (22b)
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ρ

C
=

(1− k)(3 + x)

(1 + x)2
(22c)

p

C
= 4

(1 + kx)

(1 + x)

ẏ

y
+

(k − 1)

(1 + x)
(22d)

which corresponds to a neutral relativistic star. We believe that the uncharged solution

(22a)-(22d) is also a new solution to the Einstein field equations (4a)-(4c). It does not

appear in the comprehensive list of solutions presented by Delgaty and Lake [2]. In

the solutions (21a)-(21e) and (22a)-(22d) the gravitational potentials λ and ν are well

behaved. Clearly the energy density ρ is positive at the origin if we choose k < 1. The

pressure is finite at the origin. These are desirable features in a stellar model.

When K+α = 3 the series in (19) terminates. It is then possible to write the exact

solution to the Einstein-Maxwell system in terms of elementary functions. The explicit

form of the solution is given by

e2λ =
(K − 1)(1 + x)

(K − 1− x)
(23a)

e2ν = A2
[

c1(1 + x)
3

2 + c2(K − 1− x)
1

2 (K + 2 + 2x)
]2

(23b)

ρ

C
=

2K(3 + x) + (3−K)x

2(K − 1)(1 + x)2
(23c)

p

C
=

1

K − 1
×

c1(1 + x)
1

2 [5K − 6− (K + 6)x] + c2(K − 1− x)
1

2 [4K − 12−K2 − (12 + 2K)x]

c1(1 + x)
5

2 + c2(1 + x)(K − 1− x)
1

2 (K + 2 + 2x)

+
(3−K)x

2(1−K)(1 + x)2
(23d)

E2

C
=

(3−K)x

(1−K)(1 + x)2
(23e)

where K = (k − 1)/k and x = Cr2. Clearly (23a)-(23e) is a special case of the

general solution (21a)-(21e). The solution (23a)-(23e) has the advantage of being given

completely in terms of elementary functions which makes an analysis of the physical

features of the model possible. When K = 3 (i.e. k = −1
2
) and α = 0 we obtain

e2λ =
2(1 + x)

(2− x)
(24a)

e2ν = A2
[

c1(1 + x)
3

2 + c2(2− x)
1

2 (5 + 2x)
]2

(24b)

ρ

C
=

3(3 + x)

2(1 + x)2
(24c)

p

C
=

9

2





c1(1 + x)
1

2 (1− x)− c2(2− x)
1

2 (1 + 2x)

c1(1 + x)
5

2 + c2(1 + x)(2− x)
1

2 (5 + 2x)



 (24d)

for an uncharged relativistic stellar model. The special case (24a)-(24d) is the same as

the result of Durgapal and Bannerji [3] and Maharaj and Mhkwanazi [14]. We point

out that Maharaj and Mhkwanazi [14] had a numerical mistake in their calculation of
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the pressure p which has been corrected in our solution. We believe that the solution

(23a)-(23d) is important in the study of charged stars as it contains the Durgapal and

Bannerji [3] model which has been shown to be consistent with a realistic dense star.

Extensive studies of the Durgapal and Bannerji solution, as indicated in the compendium

by Delgaty and Lake [2], has proved that all the criteria for physical acceptability are

satisfied. It is consequently used in many astrophysical studies that model neutron

stars.

6. Terminating series

The general solution (20) can be expressed in terms of the special functions, namely

hypergeometric functions. For particular values of K and α the series solution can be

given in terms of elementary functions as demonstrated in section 5. This is possible in

general because the series (18) and (19) terminate for restricted values of the parameters

K and α. Using this feature we obtain two sets of general solutions in terms of

elementary functions, by determining the specific restriction on K+α for a terminating

series, as demonstrated in the following sections.

6.1. The first solution

On substituting r = 0 in equation (16) we obtain

ci+1 =
4i(i− 1)− (K + α)

(2i+ 2)(2i− 1)
ci, i ≥ 0. (25)

If we set K + α = 4n(n − 1), where n is a fixed integer, then cn+1 = 0. Clearly the

subsequent coefficients cn+2, cn+3, cn+4, . . . vanish and equation (25) has the solution

ci = 4n(n− 1)
(−4)i−1(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
c0, 1 ≤ i ≤ n. (26)

Then from the equations (14) (when r = 0) and (26) we obtain

Y1 = c0

[

1 + 4n(n− 1)
n
∑

i=1

(−4)i−1(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
X i

]

(27)

where K + α = 4n(n− 1).

On substituting r = 3
2
in (16) we obtain

ci+1 =
(2i+ 3)(2i+ 1)− (K + α)

(2i+ 5)(2i+ 2)
ci, i ≥ 0. (28)

If we set K + α = (2n + 3)(2n + 1), where n is a fixed integer then cn+1 = 0. Also

the subsequent coefficients cn+2, cn+3, cn+4, . . . vanish and equation (28) can be solved

to yield

ci =
3(−4)i(2i+ 2)(n+ i+ 1)!

(n + 1)(n− i)!(2i+ 3)!
c0, 1 ≤ i ≤ n. (29)
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Then from the equations (14) (when r = 3
2
) and (29) we obtain

Y1 = c0X
3

2

[

1 +
3

(n+ 1)

n
∑

i=1

(−4)i(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
X i

]

(30)

where K + α = (2n + 3)(2n + 1). The polynomial and algebraic functions (27) and

(30) comprise the first solution of the differential equation (12) for appropriate values

of K + α.

6.2. The second solution

We can use the form of the particular solution in section 5, expressed in terms of

elementary functions, to simplify the representation of the second solution. The special

solution in section 5 contains terms of the form (1 −X)
1

2 (1 + 2X) which is product of

(1−X)
1

2 and a polynomial. This suggests that the second solution in general is of the

form

Y2 = (1−X)
1

2u(X)

where u(X) is an arbitrary function. We now take Y2 to be the generic second solution

of (12) and explicitly determine u(X). Equation (12) gives

4X(1−X)ü− 2(1 + 2X)u̇+ (1 +K + α)u = 0 (31)

where dots denote differentiation with respect to X .

Since X = 0 is a regular singular point of the differential equation (31) we can

apply the method of Frobenius. We assume that the solution is of the form

u =
∞
∑

n=0

cnX
n+r, c0 6= 0. (32)

On substituting (32) in the differential equation (31) we obtain

2c0r[2(r − 1)− 1]Xr−1 +
∞
∑

n=0

(

2cn+1(n+ 1 + r)[2(n+ r)− 1]− cn[4(n+ r)2 − (1 +K + α)]
)

Xn+r = 0. (33)

The coefficients of the various powers of X have to vanish. Setting the coefficient of

Xr−1 in (33) to zero we obtain the indicial equation

2c0r[2(r − 1)− 1] = 0.

Since c0 6= 0 we must have r = 0 or r = 3
2
as in section 4. Equating the coefficient of

Xn+r in (33) to zero we obtain

cn+1 =
4(n+ r)2 − (1 +K + α)

2(n+ r + 1)[2(n+ r)− 1]
cn (34)

which is the basic difference equation governing the structure of the solution.

We establish a general structure for the coefficients by considering the leading terms.

On substituting r = 0 in equation (34) we obtain

ci+1 =
4i2 − (1 +K + α)

(2i+ 2)(2i− 1)
ci. (35)
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We assume that K+α = (2n+3)(2n+1) where n is a fixed integer. Then cn+2 = 0 from

(35). Consequently the remaining coefficients cn+3, cn+4, cn+5, . . . vanish and equation

(35) has the solution

ci = 4(n+ 1)
(−4)i−1(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
c0, 1 ≤ i ≤ n+ 1. (36)

Then from equation (32)(when r = 0) and (36) we obtain

u = c0

[

1 + 4(n+ 1)
n+1
∑

i=1

(−4)i−1(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

.

Hence we have the result

Y2 = c0(1−X)
1

2

[

1 + 4(n+ 1)
n+1
∑

i=1

(−4)i−1(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

(37)

where K + α = (2n+ 3)(2n+ 1).

On substituting r = 3
2
in equation (34) we obtain

ci+1 =
(2i+ 3)2 − (1 +K + α)

(2i+ 5)(2i+ 2)
ci. (38)

We assume that K+α = 4n(n−1) where n is a fixed integer. Then cn−1 = 0 from (38).

Consequently the remaining coefficients cn, cn+1, cn+2, . . . vanish and (38) can be solved

to yield

ci =
3(−4)i(2i+ 2)(n+ i)!

n(n− 1)(2i+ 3)!(n− i− 2)!
c0, i ≤ n− 2. (39)

Then from the equations (32) (when r = 3
2
) and (39) we obtain

u = c0X
3

2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(−4)i(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

.

Hence we have the result

Y2 = c0(1−X)
1

2X
3

2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(−4)i(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

(40)

where K + α = 4n(n− 1).

The solutions (37) and (40) generate the second solution of the differential equation

(12) which are clearly independent from the solutions (27) and (30). The quantities (37)

and (40) are products of polynomials and algebraic functions.

7. Elementary functions

Thus we have generated general solutions to the differential equation (12) by restricting

the values of K + α so that polynomials and product of polynomials with algebraic

functions are possible as solutions. Collecting these results we have the first category of

solutions

Y = a(1−X)
1

2

[

1 + 4(n+ 1)
n+1
∑

i=1

(−4)i−1(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!
X i

]

+ bX
3

2

[

1 +
3

(n+ 1)

n
∑

i=1

(−4)i(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!
X i

]

(41)
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for K + α = (2n + 3)(2n+ 1) where a and b are arbitrary constants. In terms of x the

solution (41) becomes

y = a
(

K − 1− x

K

)

1

2

[

1 + 4(n+ 1)
n+1
∑

i=1

(−4)i−1(2i− 1)(n+ i)!

(2i)!(n− i+ 1)!

(

1 + x

K

)i
]

+ b
(

1 + x

K

)

3

2

[

1 +
3

(n+ 1)

n
∑

i=1

(−4)i(2i+ 2)(n+ i+ 1)!

(n− i)!(2i+ 3)!

(

1 + x

K

)i
]

. (42)

The second category of solutions is given by

Y = a(1−X)
1

2X
3

2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(−4)i(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!
X i

]

+ b

[

1 + 4n(n− 1)
n
∑

i=1

(−4)i−1(2i− 1)(n+ i− 2)!

(2i)!(n− i)!
X i

]

(43)

for K +α = 4n(n− 1) where a and b are arbitrary constants. In terms of x the solution

(43) becomes

y = a
(

K − 1− x

K

)

1

2
(

1 + x

K

)

3

2

[

1 +
3

n(n− 1)

n−2
∑

i=1

(−4)i(2i+ 2)(n+ i)!

(2i+ 3)!(n− i− 2)!

(

1 + x

K

)i
]

+ b

[

1 + 4n(n− 1)
n
∑

i=1

(−4)i−1(2i− 1)(n+ i− 2)!

(2i)!(n− i)!

(

1 + x

K

)i
]

. (44)

It is remarkable that the solutions (42) and (44) are expressed completely as

combinations of polynomial and algebraic functions. It is rare to find general solutions,

considering the nonlinearity of the gravitational interactions, to the field equations in

terms of elementary functions. We have expressed our solutions in the simplest possible

form. This has the advantage of simplifying the analysis of the physical properties

of the dense star. Observe that our treatment has combined both the charged and

uncharged cases for a relativistic star. If we substitute α = 0 in (42) and (44) then we

can obtain the solutions for the uncharged case directly. Consequently our approach

has the unexpected but very desirable feature of producing an uncharged (possibly new)

solution to equations (4a)-(4c) from the charged solutions when E = 0. We believe that

the solutions obtained in this paper to the Einstein (4a)-(4c) and Einstein Maxwell

(6a)-(6d) field equations have not been found before.

From our general class of solutions (42) and (44) it is possible to generate particular

solutions found previously. If we take K = 3 and α = 0 (n = 0) then it is easy to verify

that the equation (42) becomes

y = c1(2− x)
1

2 (5 + 2x) + c2(1 + x)
3

2

where c1 = a/9 and c2 = b/3
3

2 are new arbitrary constants. Thus we have regained the

Durgapal and Bannerji [3] neutron star model. Other explicit functional forms for y

are obtainable which could be useful in applications for a dense star. As an example

suppose that K + α = 8(n = 2) then from (44) we obtain

y = c1(K − 1− x)
1

2 (1 + x)
3

2 + c2
[

K2 + 4K(1 + x)− 8(1 + x)2
]

.
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where c1 = a/K2 and c2 = b/K2 are new arbitrary constants. It is now possible

to generate an exact solution to the Einstein-Maxwell system (6a)-(6d) in terms of

elementary functions when K + α = 8. This is given by

e2λ =
(K − 1)(1 + x)

(K − 1− x)
(45a)

e2ν = A2
[

c1(K − 1− x)
1

2 (1 + x)
3

2 + c2
(

K2 + 4K(1 + x)− 8(1 + x)2
)]2

(45b)

ρ

C
=

2K(3 + x) + (K − 8)x

2(K − 1)(1 + x)2
(45c)

p

C
=

2(K − 1− x)
1

2

[

c1(1 + x)
1

2 (3K − 4(1 + x)) + 8c2(K − 1− x)
1

2 (K − 4(1 + x))
]

(K − 1)(1 + x)
[

c1(K − 1− x)
1

2 (1 + x)
3

2 + c2 (K2 + 4K(1 + x)− 8(1 + x)2)
]

−
K

(K − 1)(1 + x)
+

(K − 8)x

2(1−K)(1 + x)2
(45d)

E2

C
=

(K − 8)x

(1−K)(1 + x)2
(45e)

where K = (k − 1)/k and x = Cr2. The solution (45a)-(45e) is given in a simple form

which facilitates a physical analysis.

8. Discussion

We have found new solutions (21a)-(21e) to the Einstein-Maxwell system using a

systematic series analysis that produces a number of difference equations which can

be solved in general. A useful feature of the approach is that we regain the Durgapal

and Bannerji neutron star model [3] as a special case which suggests that our class of

solutions are physically reasonable. We briefly consider some physical features of the

solutions of interest.

Firstly, in the general solution (21a)-(21e), when studying models of charges

spheres, we should consider only those values of k for which the energy density ρ,

the pressure p and the electric field intensity E are positive. The choice of k must

ensure that the gravitational potential e2λ remains positive; the remaining potential

e2ν is necessarily positive. Clearly a wide range of charged spheres, with nonsingular

potentials and matter variables, are possible for relevant choices of k. The interior

metric (1) must match to the Reissner-Nordstrom exterior spacetime

ds2 = −

(

1−
2M

r
+

Q2

r2

)

dt2 +

(

1−
2M

r
+

Q2

r2

)

−1

dr2 + r2(dθ2 + sin2 θdφ2)

across the boundary r = R. This yields the relationships

1−
2M

R
+

Q2

R2
= A2

[

ay1(CR2) + by2(CR2)
]2

(

1−
2M

R
+

Q2

R2

)

−1

=
1 + CR2

1 + kCR2
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between the constants a, b, k, A and C. This shows that continuity of the metric

coefficients across the boundary of the star is easily achieved. The matching conditions

at the boundary may place restrictions on the function ν and its first derivative (for

uncharged matter) and the pressure may be nonzero (if there is a surface layer of charge);

there are sufficient free parameters available to satisfy the necessary conditions that may

arise from a particular physical model under consideration.

Secondly, we observe that our solutions may be interpreted as models for anisotropic

spheres (which may be charged or uncharged) where the parameter α plays the role of the

anisotropy factor. The solutions found depend smoothly on the parameter α; isotropic

and uncharged solutions can be regained for α = 0. For recent analyses of the physics of

anisotropic matter see Chaisi and Maharaj [15], Dev and Gleiser [16], [17] and Maharaj

and Chaisi [10].
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