PHYSIOLOGICAL AND GROWTH RESPONSES OF FIVE RICE (*Oryza sativa* L.) CULTIVARS TO SOIL MOISTURE STRESS

By

RAMAN DHARSHIKA

DEPARTMENT OF AGRICULTURAL BIOLOGY FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

2019

ABSTRACT

Scarcity of water for irrigation is an alarming issue limiting crop production worldwide and it is increasing severely in Sri Lanka. Rice production in the Batticaloa district is thus being adversely hampered by the shortage of water. The rice yield is highly susceptible to moisture stress especially during the '*Yala'* Season. This study therefore was made to evaluate moisture stress tolerance of selected rice cultivars viz; 'Bg 300', 'Bg 357', 'Bg 366', 'Bw 367' and 'Bg 370' and to determine the one which can produce substantial yield when moisture stress was imposed during the panicle initiation stage. This experiment was conducted at the Agronomy farm of the Eastern University, Sri Lanka and was laid out in the Randomized Complete Block Design with ten treatments and four replications and the treatments were arranged in 5×2 factor factorial manner. Moisture stress was imposed for the selected rice cultivars for a period of fourteen days during the panicle initiation stage. The control plants were watered once in two days.

There were significant (p<0.05) differences between treatments in the measured physiological and growth attributes. Moisture stress significantly (p<0.05) reduced the Relative Water Content (RWC) of all the tested rice cultivars. The highest RWC (59.2%) was observed in 'Bg 370' rice cultivar and the lowest (48.2%) was found in 'Bw 367' under moisture stress condition. Moisture stress significantly (p<0.05) reduced Chlorophylls a, b and total Chlorophyll contents of the tested rice cultivars. The highest amounts of Chlorophylls a (9.1mgg⁻¹) b (9.8mgg⁻¹) and total Chlorophyll (13.3 mgg⁻¹) were observed in 'Bg 370' rice cultivar and the lowest amounts (Chlorophylls a-4.5mgg⁻¹, b-4.5mgg⁻¹ and total Chlorophyll-6.3mgg⁻¹) were recorded in 'Bw 367' rice cultivar.

Moisture stress significantly (p<0.05) reduced the Leaf Area Index (LAI) of all the tested rice cultivars. The highest LAI (0.9) was observed in 'Bg370' and the lowest was found in 'Bw367' under moisture stress condition. Moisture stress significantly (p<0.05) reduced the yield of all the tested rice cultivars. The highest yield (2.1tonnesha⁻¹) was observed in 'Bg370' rice cultivar and the lowest (0.5 tonnesha⁻¹) was found in 'Bw367' under moisture stress condition. Moisture stress significantly (p<0.05) reduced the 1000 grain weight of all the tested rice cultivars. The highest 1000 grain weight (19.1g) was obtained in 'Bg370' and the lowest (10.1g) was found in 'Bw367' under moisture stress condition.

There were also significant (p<0.05) interactions between cultivars and moisture stress treatments in the RWC, 'Chlorophyll a', total Chlorophyll, , plant shoot length, 1000 grain weight and yield of the tested cultivars. However, no significant (p>0.05) interaction was observed in the plant dry weight and 'Chlorophyll b' content. Cultivar 'Bg370' exhibited comparatively more tolerance to moisture stress with less reduction in various physiological and growth attributes and could be suggested for cultivation in the drought prone areas of the Batticaloa district.

TABLE OF CONTENTS

ABSTRACT	Ι
ACKNOWLEDGEMENTS	III
TABLE OF CONTENTS	IV
LIST OF TABLES	IX
LIST OF FIGURES	X
LIST OF PLATES	XI
ABBREVIATIONS	XII
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	6
2.1 Cereals	6
2.2 Rice	8
2.2.1 Origin and distribution	9
2.2.2 Geographical distribution of rice cultivation	11
2.2.3 Rice cultivation in Sri Lanka	12
2.3 Taxonomy of rice plant	13
2.4 Botanical description of rice plant	13
2.4.1 Habit	14
2.4.2 Root system	14
2.4.3 Culm	15
2.4.4 Leaf	15
2.4.5 Tillers	15
2.4.6 Panicle	16
2.4.7 Spikelets	16

2.4.8 Fruits	17
2.5 Growth and development of rice plant	17
2.5.1 Vegetative phase	17
2.5.1.1 Seed germination and seedling emergence	17
2.5.1.2 Pre-tillering	18
2.5.1.3 Tillering stage	18
2.5.1.4 Maximum tillering	19
2.5.1.5 Vegetative lag phase	19
2.5.2 Reproductive phase	19
2.5.2.1 Panicle initiation	19
2.5.2.2 Internode elongation	20
2.5.2.3 Panicle differentiation	20
2.5.2.4 Booting	20
2.5.2.5 Heading	21
2.5.2.6 Flowering	21
2.5.3 Ripening phase	21
2.5.3.1 Milky stage	22
2.5.3.2 Dough stage	22
2.5.3.3 Maturity stage	22
2.6 Nutritional composition of rice grains	22
2.7 Characteristic features of selected rice cultivars	24
2.7.1 Rice cultivar 'Bg300'	24
2.7.2 Rice cultivar 'Bg357'	24
2.7.3 Rice cultivar 'Bg366'	24 24
2.7.4 Rice cultivar 'Bw367'	25

2.7.5 Rice cultivar 'Bg370'	25
2.8 Effects of moisture deficit stress	25
2.8.1 Physiological effects	28
2.8.1.1 Relative Water Content	28
2.8.1.2 Chlorophyll content	29
2.8.2 Effects on growth	29
2.8.2.1 Effects on plant shoot length	30
2.8.2.2 Effects on Leaf Area Index	30
2.8.2.3 Effects on plant dry weight	31
2.8.3 Effects on yield	31
2.8.4 Effects on yield components	33
CHAPTER 3 MATERIALS AND METHODS	35
3.1 Experimental site	35
3.2 Agronomic practices	35
3.2.1 Preparation of polyethylene bags	35
3.2.2 Collection of seeds	36
3.2.3 Raising of seedlings	36
3.2.4 Transplanting	38
3.2.5 Water management	38
3.2.6 Rainout shelter	38
3.2.7 Fertilizer application	38
3.2.8 Weeding	39
3.3 Treatment structure	39
3.3.1 Experimental design	40

3.4 Physiological measurements	42
3.4.1 Relative water content	42
3.4.2 Chlorophyll contents	42
3.5 Growth attributes	45
3.5.1 Plant shoot length	45
3.5.2 Flag leaf length	45
3.5.3 Leaf Area Index	45
3.5.4 Plant dry weight	45
3.6 Yield	46
3.7 Yield components	46
3.7.1 Panicle length	46
3.7.2 Number of spikelets per panicle	46
3.7.3 1000 grain weight	46
3.7.4 Unfilled grains	47
3.8 Analysis of data	47
CHAPTER 4 RESULTS AND DISCUSION	48
4.1 General appearance of plants	48
4.1.1 Regularly watered plants	48
4.1.2 Water stressed plants	48
4.2 Physiological measurements	48
4.2.1 Relative Water Content	48
4.2.2 Chlorophyll content	50
4.3 Growth attributes	53
4.3.1 Plant shoot length	53
4.3.2 Flag-leaf length	54

4.3.3 Leaf Area Index	56
4.3.4 Plant dry weight	58
4.4 Yield	60
4.5 Yield components	63
4.5.1 Panicle length	63
4.5.2 Number of spikelets per panicle	64
4.5.3 1000 grain weight	66
4.5.4 Unfilled grains	68
CHAPTER 5 CONCLUSIONS	70
SUGGESTIONS FOR FUTURE STUDIES	71
REFERENCES	72
APPENDICES	