RELATIVE EFFICIENCY OF VARIOUS CONTROL STRATEGIES ON CHILLI (*Capsicum annuum* L.) ROOT KNOT NEMATODES (*Meloidogyne incognita*)

BY

MOHAMMED RAFEEK FATHIMA NIFFLAH

DEPARTMENT OF AGRICULTURAL BIOLOGY

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2019

ABSTRACT

Chilli is one of the major cash crops grown in Sri Lanka. There are number of pests and diseases identified on chilli crop. Thus, there is a need to suggest efficient way to control these pests and diseases. Chilli leaf curl complex is the major disease on chilli caused by virus and transmitted by various vector insect pests. Other than leaf curl complex, chilli root knot disease caused by root knot nematodes (Meloidogyne incognita) is one of the diseases which affect chilli plant. Farmers in the Batticaloa district are mainly engaged in rice and chilli cultivation. In the past few years, chilli cultivation in the Batticaloa area was affected by the root knot nematodes and caused root knot disease. Few acres of cultivatable chilli lands were abandoned in Kaluthawalai area due to root knot disease which is the main area cultivating chilli in the Batticaloa district. This experiment was conducted in three different locations of the Batticaloa district, namely (1) Crop Farm of the Eastern University, Sri Lanka (2) Kaluthawalai chilli cultivation fields and (3) Agricultural Training Centre at Chathurukondan. Studies were carried out to find out the relative efficiency of various control strategies on chilli root knot nematodes. PC-1 chilli variety was selected for the experiment as farmers in this area mainly cultivate this variety. Treatments were started after two weeks of transplanting of chilli seedlings. This experiment was laid out in the Randomized Complete Block Design with seven treatments and four blocks. Treatments were imposed for the selected chilli cultivar at fortnight intervals. The control plants were left as conventional chilli cultivation (no treatments were applied). There were significant (p<0.05) differences between treatments in the number of wilted plants in each plot and block. The lowest number of wilted plants were observed in the plots treated with compost (0±0 plants at 4th week after transplanting, 0±0 plants at 6th week after transplanting, 0.25±0 plants at 8th week after transplanting, 0.75±0.09 plants

at 10th week after transplanting and 0.5 ± 0.11 plants at 12th week after transplanting) and bio fertilizer (0±0 plants at 4th week after transplanting, 0.25 ± 0.09 plants at 6th week after transplanting, 0.5 ± 0.09 plants at 8th week after transplanting, 0.75 ± 0.09 plants at 10th week after transplanting and 0.75 ± 0.11 plants at 12th week after transplanting). The highest number of wilted plants was observed in the plots treated with citronella oil (2±0 plants at 4th week after transplanting, 1.5 ± 0.11 plants at 6th week after transplanting, 1.75 ± 0.11 plants at 8th week after transplanting, 1.75 ± 0.09 plants at 10th week after transplanting and 2±0 plants at 12th week after transplanting) and chicken litter (1.25 ± 0.09 plants at 4th week after transplanting, 1.0 ± 0 plants at 6th week after transplanting, 1.5 ± 0 plants at 4th week after transplanting, 1.0 ± 0 plants at 10th week after transplanting and 2±0 plants at 12th week after transplanting).

The study showed that there were no significant (p>0.05) differences among treatments in the numbers of pest-infested plants. The treatments failed in controlling insect pests fed on shoots of chilli crop. The number of pest-infested plants in treated plots was similar to that of untreated control treatment.

There were significant (p<0.05) differences between treatments in the yield of chilli plants in each treatment of each block. The highest yield was; obtained from plots with nematicide/ Diazenol 5% ($309\pm12.1g$ at 6th week after transplanting, $335.3\pm14.2g$ at 8th week after transplanting and 248.7±15.6g at 10th week after transplanting) followed by the plots treated with 10ml of bio fertilizer, compost 5kg/10m² and neem seed extract 50 l per acre. The lowest yield was obtained from the plots treated with essential oil/ citronella (72.8±6.1g at 6th week after transplanting, 93.1±8.7g at 8th week after transplanting and 55.1±5.09g at 10th week after transplanting) and from the untreated control plots (66.8±3.1g at 6th week after transplanting, 78.8±3.8g at 8th week after transplanting and 53.4±3.8g at 10th week after transplanting).

Though the bio-fertilizer, compost and neem seed extract gave second higher yield in chilli cultivation by comparing to the side effect to environment these can be recommended to chilli plants. Bio-fertilizers are easily affordable nowadays and small quantity is quite enough to treat large number of seedlings.

TABLE OF CONTENTS

ABSTRACT		Ι
ACKNOWLEDGEMENTS		IV
LIST OF TABLES		IX
LIST OF FIGURES		X
LIST OF PLATES		XI
ABBREVIATIONS		XII
CHAPTER 1 INTRODUCTION		1
CHAPTER 2 LITERATURE REVIEW		6
2.1 General description of chilli		6
2.2 Origin and description of chilli		7
2.3 production of chilli		7
2.3.1 Global production of chilli		7
2.3.2 Status of chilli cultivation in Sri Lanka		8
2.3.3 Status of chilli cultivation in Batticaloa district		13
2.4 Characteristic features of PC 1 variety	2	13
2.5 Importance of chilli		14
2.5.1 Food		14
2.5.1.1 Nutritional value		14
2.5.2 Medicinal use	8	16
2.5.3 Health benefits of chilli		16
2.6 constraints in chilli cultivation		17
2.6.1 Unavailability of suitable variety		17

3.4	
2.6.2 Pest and diseases in chilli	17
2.6.2.1 Pest of chilli plant	17
2.6.2.2 Diseases of chilli plant	18
2.6.3 Pest harvest losses and marketing	18
2.6.4 Plant parasitic nematodes	19
2.6.4.1 Basic biology of pant parasitic nematodes	19
2.7 Classification of plant parasitic nematodes based on the prt of the plant p	oart
effected (Dropkin V, 1990)	20
2.8 Root knot nematodes	20
2.9 Symptoms and signs	23
2.10 Present status of toots knot nematodes (RKN) in Sri Lanka.	24
2.11 Disease management	26
2.11.1 Cultural control	26
2.11.2 Chemical control	27
2.11.3 Biological control	29
2.11.4 Plant resistance	33
2.11.5 Integrated management	34
2.11.6 Mechanical control	34
2.11.6.1 Soil solarization	34
2 11 6.2 Heat treatment	35
CHAPTER 3 MATERIALS AND METHOD	36
	36
3.1 Location	24
3.2 Selection of land area	30

3.3 Collection of soil sample		36
3.4 Testing for nematodes		37
3.5 Seed Collection		40
3.6 Seed treatment		40
3.7 Land preparation		40
3.8 Nursery preparation and Management		41
3.9 Preparation of neem seed contract		43
3.10 Experiment design		44
3.11 Filed establishment of chili pants		44
3.12 Application of treatments of each blocks randomly		45
3.13 Agronomic practices		48
3.14 Parameter measured		50
3.14.1 Yield		50
3.14.2 Number of nematodes		50
3.14.3 Number of wilted plants		50
3.14.4 Number of root knots		50
3.14.5 Number of infested chilli	1	50
3.15 Analysis of data		50
CHAPTER 4 RESULTS AND DISCUSSION		51
4.1 Preliminary study	и.	51
4.2 Number of wilted plants		51
4.3 Number pest infested plants		55
4.4 Number of Nematodes		58

4.5 Number of Nematodes

4.6 Plant yield

CHAPTER 5CONCLUSIONS63SUGGESTIONS FOR FUTURE STUDIES64REFERENCES65

APPENDICES

58