EFFECTS OF DRYING TEMPERATURE ON SOIL WATER REPELLENCY IN JAMBOLAN (Syzygium cumit:i) NATURAL

FOREST IN VADDUVAAKAL, MULLAITIVU

BY

APOURVANAN BERTRAND

DEPARTMENT OF AGRICULTURAL ENGINEERING

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY

SRI LANKA

2019

ABSTRACT

Soil water repellency (SWR) has become burning issue as best characteristics of soil is needed for retention of water. Soil water repellency is often recognized in surface layers of soil that dry out frequently. The degree of water repellency of a soils can be measured by using the water drop penetration time (WDPT) test on field moist or dried soils, referred to as actual and potential water repellency, respectively. The aim of the study was to investigate the effects of different drying temperatures on the severity of soil water repellency in Vadduvaakal, Mullaitivu in Northern part of Sri Lanka. The study area was identified by using WDPT test and soils samples were collected, packed and transported immediately to the laboratory of Department of Agricultural Engineering. Further, actual water repellency was measured by WDPT test in field. Potential WDPT was determined at different temperature (Ambient, 40 °C, 50 °C, 70 °C, 90 °C and 105 °C), respectively. Soil physical parameters (bulk density, Soil texture), Chemical parameter (pH, electrical conductivity and organic matter content (%) were measured in laboratory. The results reveal that, the study area belongs to the textural class of sandy soil since it has 91.4% of sand. According to the WDPT classification, 80% of surface soil belongs to the class 3(severe water repellent). The SWR at field condition reduces rapidly when the depth increases from the surface to the layer of 2-4cm, and then after SWR reduces slightly up to 4-6cm of layer. No soil water repellency observed when the depth increases from the layer of 4-6cm to the depth of 25cm. When the temperature increases from ambient to 40°C the SWR increases suddenly in the layers of 0-2cm and 2-4cm. And slow increases of SWR was observed in the above layers when the temperature increases from 40 °C to 50 °C, 50 °C to 70 °C, 70 °C to 90 °C and 90 °C to 105 °C. According to the results of WDPT, the SWR decreases suddenly in all drying temperatures, when the depth increases from the layer of 0-2cm to

2-4cm. Thereafter the SWR reduces slowly up to the layer of 4-6cm and then no SWR was observed up to the depth 25cm in all drying temperatures. There was a negative relationship between bulk density and SWR. The SWR decreases when the bulk density increases from the layer of 0-2cm (1.04gcm⁻³) to 2-4cm (1.18gcm⁻²). The organic matter content in the soil determines the severity of SWR. In my findings, it was observed that the SWR reduces with organic matter content, decreases from the surface soil to the layer of 22-25cm.

Keywords: Soil water repellency, Water drop penetration time, Bulk density, Soil organic carbon, Soil organic matter

TABLE OF CONTENTS

ABSTRACT		i
ACKNOWLEDGEMENT		iii
TABLE OF CONTENTS		iv
LIST OF FIGURES		viii
LIST OF TABLES		xi
ABBREVIATIONS	35	x
CHAPTER 01		01
INTRODUCTION		01
1.1 Background		01
1.2 Objectives		01
CHAPTER 02		04
LITERATURE REVIEW		04
2.1 Occurrence of soil water repellency		04
2.2 Effects and consequences of water repellency soil		05
2.3 Physics of soil water repellency		06
2.3.1 Surface tension, contact angle and water potential		08

2.3.2 Characterisation of mechanisms and substances leading	
to soil water repellency	08
2.4 Persistence and severity of water repellency	10
2.5 Factors leading to soil water repellency	12
2.5.1 Biological factors	12
2.5.2 Physical factors	13
2.6 Actual and potential water repellency	14
2.7 Temporal variation of water repellency	15
2.8 Re-establishment of soil water repellency when drying	16
2.9 Temperature effects on soil water repellency	17
2.10 Remediation strategies for the management of water repellency	18
CHAPTER 03	22
MATERIALS AND METHODS	22
3.1 Selection of s. e	22
3.2 Description of study area	22
3.3 Terrain characterization	23
3.4 Field assessment of soil water repellency	24
3.4.1 WDPT test	24
3.5 Soil sampling	24
3.6 Laboratory assessment of soil water repellency	25

3.6.1 WDPT and MED test	25
3.6.2 Soil moisture content	26
3.6.3 Bulk density	27
3.6.4 Particle density	27
3.6.5 Soil texture	27
3.6.6 Soil pH	29
3.6.7 Electrical Conductivity of the soil	29
3.6.8 Organic carbon	30
3.7 Data analysis	30
CHAPTER 04	31
RESULTS AND DISCUSSION	31
4.1 Occurrence of soil water repellency	31
4.2 Surface soil water repellency classification	32
4.3 Soil water repellency at different soil conditions	33
4.4 WDPT with Hilk density and organic matter content	35
4.5 Soil water repellency with pH, EC and SOC	37
4.6 Soil texture	39
4.7 Soil water repellency with different drying temperature	40

CHAPTER 05

CONCLUSION

SUGGESTION AND RECOMMENDATION

42

42

45

REFERENCES