

EFFECT OF IBA ON THE FORMATION OF *IN VITRO* ADVENTITIOUS ROOTS FROM TUBER AND STEM SEGMENTS OF POTATO (*Solanum tuberosum* L.)

BY

SACHITHANANTHAM KIRIJA DEVI

DEPARTMENT OF CROP SCIENCE FACULTY OF AGRICULTURE EASTERN UNIVERSITY SRI LANKA

2019

ABSTRACT

Potential for mutation breeding of potato are offered by using adventitious buds that arise from adventitious roots of in vitro explants of tuber disc and stem segments to produce a very high mutation frequency and reduced chimerism for plant development. In experiment I, the tuber discs were cultured in MS medium supplemented with the different concentrations of IBA (0, 5,15,25,50 mg/l) to induce adventitious roots. And experiment II, stem cuttings without nodes were taken from stock plantlets then cultured in MS medium supplemented with different concentration of IBA (0, 5, 15, 25, and 40, 60 mg/l) to promote adventitious roots. Days for root formation, root length, number of roots, and diameter of roots were recorded in both experiments. The results revealed that 25 mg/l IBA concentration was favorable concentration for root formation from tuber disc in in vitro method.

And in stem segments among six concentration of IBA, 40 mg/l concentrations showed the highest (60%) root formation and 15 roots per explants was observed. And also, the days taken for root formation was 14. Hence, 25 mg/l IBA concentration showed 55% of root formation, 12 roots per plant, root length (12.5 mg/l). Hence, it could be stated in potato variety granola, IBA concentration range between 25 mg/l - 40 mg/l favorable concentration for adventitious root formation from stem segments.

TABLE OF CONTENTS

ABSTRACT			I
ACKNOWLEDGEMENTS			II
TABLE OF CON	TENTS		Ш
LIST OF TABLI	ES		VII
LIST OF FIGUR	RES	2-8	VIII
LIST OF PLATI	ES		IX
ABBREVIATIO	NS		X
CHAPTER 01	INTRODUCTION		1
CHAPTER 02	LITERATURE REVIEW		5
2.1 Botany of the	potato plant		5
2.1.1 Morpho	logy of potato plant		5
2.1.2 Habit			5
2.1.3 Stem			6
2.1.4 Eyes			6
2.1.5 Stolon			7
2.1.6 Root			7
2.1.7 Sprout	a		7
2.1.8 Tuber			8
2.1.9 Leaf			8
2.1.10 Inflore	escence		9
2.1.11 Flowe	r		9

2.1.12 Fruit	9
2.2 Potato mutation breeding gamma rays	
2.2.1 The effect of Chimera in vegetative propagation plants.	11
2.3 Adventitious bud formation	
2.3.1 Adventitious bud formation from tuber disc.	13
2.3.1.1 In vitro adventitious bud formation.	14
2.3.2 Adventitious bud formation from stem segment.	14
2.3.3 Adventitious bud formation from other explants	15
2.4 Effect of growth regulator on adventitious bud formation	16
2.5 Role of the adventitious root system for adventitious	
bud formation	17
2.6 Effect of physiological factors for adventitious bud formation	17
2.6.1 Dormancy of explant	18
2.6.2 Variety different in explant	18
2.6.3 Age of explant (Tuber)	19
2.6.4 Explant size	19
2.7 Auxin	19
2.7.1 Function of auxin	20
2.7.2 Indole-3-butric acid (IBA)	20
CHAPTER 3 MATERIAL AND METHODS	23
3.1General procedure	
3.2.1Choice of explant	23
3.1.2 Sterilization of glass wares metal and tools	23
3.1.3 Preparation of Stock Solutions	24

3.1.4 Preparation of culture media		
3.2 Experimental design		
3.2.1 Experiment 01		
3.2.2 Culture procedure for tuber disc		
3.2.2.1 Sterilization of micro tuber	26	
3.2.2.2 Inoculation of tuber disc.	27	
3.2.2 Experimental 02	28	
3.2.2.1 Culture procedure for stem segment	28	
3.3 Parameters for observation		
3.4 Culture condition		
3.5 Statistical analysis	29	
CHAPTER 4 RESULTS AND DISCUSSION	30	
4.1 Experiment 01	30	
4.1.1 Callus formation from tuber disc	30	
4.1.2 Callus formation from percentage	32	
4.1.3 Root formation from tuber callus		
4.2 Other observation from experiment I		
4.3 Experiment 02		
4.3.1 Callus formation from stem segment	37	
4.3.2 Callus formation percentage from stem segment	38	
4.3.3 Root formation percentage from stem segment	39	
4.3.4 Number of days taken for root formation from stem callus	40	
4.3.5 Number of root growth from stem callus		
4.3.6 Effect of IBA on root length and root diameter	44	
4.4 other observation from stem segment	47	

4.4.1 Shoot formation from stem segment

4.4.2 Effect of IBA on diameter and length of shoot

CHAPTER 05 CONCLUTIONS

RECOMMENTATION

REFFERENCE

APPENDICES

54

49