SPATIO-TEMPORAL ANALYSIS OF RAINFALL DISTRIBUTION IN KURUNEGALA DISTRICT, SRI LANKA

By

M.M.A.P. MANIKE

4

DEPARTMENT OF AGRICULTURAL ENGINEERING

FACULTY OF AGRICULTURE

EASTERN UNIVERSITY, SRI LANKA

2019

ABSTRACT

Climate change affects every country in various ways. Impact of climate change on water resources may be positive or negative, depending on the geographical region. Agricultural sector especially in developing countries is likely to be the most vulnerable sector to climate change as it largely depends on rainfall distribution. Investigating the spatio-temporal dynamics of rainfall has become very crucial in managing water resources efficiently for sustainable development. Analysis of climate variables become vital to assess climate induced changes and to suggest feasible adaptation strategies, particularly in agricultural based countries and to mitigate the impacts of extreme weather hazards. Kurunegala is one of the major agricultural districts in Sri Lanka. Managing the water resources for sustainable development has become great challenge to the water managers due to erratic rainfall distribution in this area. In the above context, the present study was aimed to analyse the spatio-temporal variations in rainfall distribution in Kurunegala district. Historical rainfall data collected from four gauging stations were subjected to both mathematical and statistical analysis. In addition, annual and seasonal trends of rainfall, meteorological drought conditions and recent changes in rainfall distribution were studied.

Rainfall distribution in the study area showed high spatio-temporal variations. Bathalagoda showed highest mean annual rainfall of 1843 mm. Mean annual rainfall of Wariyapola, Mediyawa and Siyambalagamuwa were 1629 mm, 1315 mm and 1222 mm, respectively. This district received higher rainfall in April, October and November. Compared to other regions, moderate distribution of rainfall was observed at Bathalagoda. In other regions, rainfall was concentrated only in certain months.

Annual rainfall at both Wariyapola and Siyambalagamuwa showed significant decreasing trend at 5% significance level. Bathalagoda showed increasing trend while Mediyawa showed decreasing trend. Southwest monsoonal (SWM) and 2nd intermonsoonal (IM2) rainfall showed decreasing trend in all regions in this district. Further, trend of SWM rainfall was significant at both Wariyapola and Siyambalagamuwa. Mediyawa and Bathalagoda showed increasing trend in both 1st inter-monsoonal (IM1) and northeast monsoonal (NEM) rainfalls. Further, all stations except Bathalagoda showed negative trend in number of rainy days and it was significant at Siyamabalagamuwa in Maha season. Number of rainy days at Wariyapola and Siyambalagamuwa showed decreasing trend while Mediyawa and Bathalagoda showed increasing trend in Yala season.

Severe drought conditions were experienced in the recent years at Wariyapola, Mediyawa and Siyambalagamuwa. At Mediyawa and Siyambalagamuwa rainfall highly deviated the long term mean. Rainfall distribution showed cyclic pattern over the time in all regions. However, amount of rainfall received in the recent years was lower than immediate past decade in all regions except Bathalagoda. Taking proper management decisions based on rainfall distribution pattern is necessary for efficient management of water resources while ensuring sustainable crop production.

*

TABLE OF CONTENTS

ABSTRACT	Ι
ACKNOWLEDGEMENT	III
LIST OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	x
CHAPTER 01	01
INTRODUCTION	01
1.1 Research problem	03
1.2 Justification	04
1.3 Objectives	05
CHAPTER 02	06
LITERATURE REVIEW	06
2.1 An overview of climate change	06
2.2 Climate of Sri Lanka	08
2.2.1 Climate change in Sri Lanka	08
2.2.2 Climate projections in Sri Lanka	10
2.3 Impacts of climate change on agriculture	10
2.4 Climate change adaptation	11
2.5 Water resource in Sri Lanka	
2.5.1 Ground water resource	16
2.5.2 Surface water	17
2.6 Kurunegala district	17
	18

2.7 Analysis of rainfall data	19
2.7.1 Missing data estimation	19
2.7.2 Homogeneity test	20
2.7.3 Statistical and mathematical analysis of rainfall data	20
2.8 Analysis of rainfall trend	21
2.9 Drought evaluation	22
CHAPTER 03	23
MATERIALS AND METHODS	23
3.1 Description of the study area	23
3.2 Data collection	26
3.3 Preparation of rainfall data for analysis	26
3.4 Analysis of historical rainfall data	27
3.4.1 Analysis of time series rainfall data	27
3.4.2Estimation of rainfall depth (Xp) expected for specific	28
probability	
3.4.3 Analysis of rainfall distribution	29
3.5 Analysis of coherent trend of annual and seasonal rainfall	29
3.6 Analysis of meteorological droughts	30
3.7 Analysis of recent changes in rainfall distribution	30
CHAPTER 04	31
RESULTS AND DISCUSSION	31
4.1 Preparation of data for analysis	31
4.2 Analysis of rainfall data	34
4.3 Estimation of the probability of exceedance	41
4.4 Rainfall distribution based on Precipitation Concentration Index (PCI)	42

4.5 Trend analysis of rainfall data	44
4.6 Drought evaluation	52
4.6.1 Drought analysis based on Standardized Precipitation Index (SPI)	52
4.7 Recent changes in rainfall in Kurunegalla District	56
CHAPTER 05	61
CONCLUSIONS	61
SUGGESTIONS AND RECOMMENDATION	63
REFERENCESS	64