EFFECT OF SPLIT APPLICATION OF JEEVAMRUTHA ON GROWTH AND YIELD OF

RADISH (Raphanus sativus L.)

BY

ACHCHI MOHAMED MOHAMED SANOOS

DEPARTMENT OF CROP SCIENCE
FACULTY OF AGRICULTURE
EASTERN UNIVERSITY
SRI LANKA

2019

ABSTRACT

Soil application of fermented liquid Jeevamrutha to radish crop helps in reducing the loss of nutrients by leaching, soil fixation and volatilization. This ultimately increases the availability of nutrients at the point of absorption in the sandy regosole. An experiment was conducted at Crop Farm, Eastern University Sri Lanka to study the effect of split application of Jeevamrutha on the growth and yield of radish. The experiment was laid out in a Completely Randomized Design. Treatments were Recommended fertilizer (T_1), 10 tones/ha compost and 1500 ℓ /ha of Jeevamrutha as a basal (T_2), 10 tons/ha compost and 750 ℓ /ha of Jeevamrutha as a basal with 750 ℓ /ha of Jeevamrutha at 10 days after sowing (T_3), 10 tons/ha compost and 500 ℓ /ha of Jeevamrutha as a basal with 500 ℓ /ha of Jeevamrutha at 10 and 20 days after sowing (T_4) and 10 tons/ha compost and 375 ℓ /ha of Jeevamrutha as a basal with 375 ℓ /ha of Jeevamrutha at 10, 20 and 30 days after sowing (T_5).

The study revealed that tuberous root diameter and length were significantly (P<0.05) varied at harvest. The highest root diameter and length of 3.59 cm and 23.60 cm were noted in T_4 . Further fresh weight of leaf was high in T_1 (42.3 g) and T_1 was not differing with tested treatments except T_2 . The highest root weight of 90.64 g was noted in T_4 at 7^{th} week after sowing. Further, total marketable yield per ha showed significant difference (P<0.05) at 7^{th} week after sowing and it was high in T_1 (43.86 tons/ha) followed by T_4 (42.88 tons/ha). However, there were no significant variations between T_1 and T_4 .

Present study concluded that 10 tons/ha compost and 500ℓ/ha Jeevamrutha as a basal with 500ℓ/ha of Jeevamrutha at 10 and 20 days after sowing would be the most suitable split application to obtain higher growth and yield of radish.

TABLE OF CONTENTS

ABSTRACT	i
LIST OF TABLES	vii
LIST OF FIGURES.	ix
ABBREVIATIONS	X
CHAPTER 01	1
1.0 INTRODUCTION	1
1.1 Objectives	4
CHAPTER 02	5
2.0 LITERATURE REVIEW	5
2.1 Radish	5
2.1.1 Botany of radish	5
2.1.2 Parts of the radish	6
2.1.3 Botanical classification	6
2.1.4 Origin and Distribution	7
2.1.5 Soil and Climatic requirement of radish	7
2.1.6 Recommended varieties by the department of Agriculture in S	ri Lanka9
2.1.7 Importance of radish	10
2.2 Organic crop production	14
2.2.1 Importance of organic manures in crop production	14
2.2.2 Effect of organic manures on growth and yield of vegetables	14
2.3 Jeevamrutha	29
2.3.1 Composition of jeevamrutha	30

2.3.2. Shelf life of liquid organic formulations	32
2.3.3 Effect of liquid formulations on growth, yield and quality of veg	getables 33
2.3.4 Effect of liquid organic manures on microbial activity	37
2.3.5 Effect of liquid formulations on production of growth p	romoting
hormones.	38
CHAPTER 03	40
3.0 MATERIALS AND METHODS	40
3.1. Location	40
3.2. Soil and Climate	40
3.3. Variety used	40
3.4. Experiment	40
3.4.1. Experimental design	41
3.4.2. Treatment	42
3.4.3 Jeevamrutha preparation and application	42
3.5 Agronomic practices	43
3.5.1. Preparation of soil mixture	43
3.5.2. Planting of seeds	43
3.6 Cultural practice	44
3.6.1. Thinning out	44
3.6.2. Watering	44
3.6.3. Fertilizer application	44
3.6.4. Weeding	45

3.6.5. Pest and diseases	45
3.7 Parameters	45
3.8 Statistical Analysis	46
CHAPTER 04	47
4.0 RESULTS AND DISCUSSION	47
4.1 Plant height	47
4.2. Leaf area	49
4.3 Leaf Area Index (LAI)	51
4.4 Chlorophyll content	53
4.5 Root length	55
4.6 Root diameter	56
4.7 Fresh weight of plant	58
4.8 Fresh weight of leaves	59
4.9: Fresh weight of root	60
4.10 Dry weight of leaves	62
4.11 Dry weight of root	63
4.12 Total marketable yield (tons/ha)	
CHAPTER 05	68
5.0 CONCLUSION	68
REFERENCES	70