EASTERN UNIVERSITY, SRI LANKA FACULTY OF COMMERCE AND MANAGEMENT SECOND YEAR SECOND SEMESTER EXAMINATION IN BACHELOR OF BUSINESS ADMINISTRATION/ BACHELOR OF COMMERCE 2013/2014 (May 2016) (PROPER/ REPEAT/ RE-REPEAT) COM 2053 BUSINESS STATISTICS

Answer All Questions. Calculators permitted.

Time: 03 Hours

1)	Customers at	a local rest	aurant are r	equested	to rate th	e servi	ces a	as excellent, good, fair, or
	The level of m	easuremen	it is					/0 /////
	a. Nomir	nal b.	Ordinal	с.	Interval	(ł.	Ratio
ii)	In a frequency	distributio	n the numbe	r of obse	rvations in	each c	lass i	s called
	a. The c	lass midpo	int	b.	The class	freque	ency	
	c. The c	class interv	al	d.	None of	the ab	ove	
iii)	A useful measu	ire to obse	rve the lack o	of symme	trv in a set	of dat	a is c	alled the
	a. Coeff	icient of sk	ewness	b.	Coefficie	nt of d	eterr	nination
	c. Coeff	icient of va	riation	d.	Variance		cccrr	init debut
iv)	For a set of dat percent of the	ta the mea observatio	n, median, ai Ins lie betwe	nd the mi	ode are all	100. T	he st	andard deviation is 4. Abou
	a. 92 and	108 b.	96 and 10)4 с.	95 and 1	05	d.	Cannot be estimated
v)	A graph that sh	lows the re	lationship be	tween tv	vo interval	or rati	o var	iables is called a
	a. Contin	gency table	2	b.	Scatter o	liagran	n ·	
	c. Stem-a	Ind-leaf dis	play	d.	Dot plot	5		
vi)	Which of the fo	llowing is i	not a conditio	on of a bi	nomial pro	babilit	v dist	ribution?
	a. Only tw	vo possible	outcomes	b.	Constant	t proba	bilit	v of success
	c. Must h	iave at leas	t three trials	d.	Indepen	ident t	rails	
vii)	Which of the fo	llowing sta	tements is n	ot correc	t regarding	the no	orma	l distribution?
	a. It is def	ined by its	mean and st	andard d	eviation	b. 1	he n	nean and median are equal
	c. It is syr	nmetric				d. I	t is b	ased on only two observat
	11.1	lard norma	l probability	distribut	ion, what i	is the I	ikelil	nood of finding z value gre
viii)	than 1.66?							
viii)	than 1.66? a. 0.4515	b.	0. 9515	c.	0.5000	d.	0.	0485
viii) ix)	than 1.66? a. 0.4515 A sample of 1 confidence inte	b. 5 observa rval for the	0. 9515 tions from a mean. The a	c. a norma	0.5000 populatic	d. on is s	0. elect	0485 ted to develop a 98 perc

- X) Type II error is committed when
 - a. Reject a true null hypothesis
 - Accept a true alternate hypothesis c. Reject a true alternate hypothesis None of these is correct d.
- The test statistics for testing a hypothesis for sample means when the population stand xi) deviation is unknown, is a.

b.

- 7 b. t C. F d. X2
- The strength of the association between a set of independent variables X and a dependent varia xii) Y is measured by the
 - a. Coefficient of correlation Coefficient of determination b.
 - c. Coefficient of variation d. Standard error of estimate
- xiii) A residual is defined as a. Y-Y b. Error sum of square c. Regression sum of squares d. Type 1 error
- The smoothed long-term direction of a time series is called the xiv) a. Cyclical variation b. Seasonal variation c. Trend d. Irregular variation
- The linear trend for the number of vehicles sold per year at Motor Sports, Inc. is given by the xvequation $\hat{Y} = 30 + 125t$. The base period, that is year 1, is 2001. Which of the following statements is correct?
 - a. The estimated sales for 2008 is 1030 b. Sales are increasing at a rate of 125 per year
 - c. The estimated sales for 2000 would be 30 d. All of the above are correct

(15 Marks

Write the appropriate terms/ number/ symbols for the given space

- The measure of central tendency most affected by extremely large values in a data is the i)
- If all the values in a data set are identical, the variance equals ii)
- A measure computed from sample data is iii)
- In a relative frequency distribution, the total of relative frequencies is equal to iv)
- Histogram is a graph of distribution V)

11)

- The percent of total variation in the dependent variable Y explained by the independent variable vi) measured by
- The alternative hypothesis in testing the claim that the speed of a brand of fax machine is at least vii) pages per minute is
- viii) An investigator selected 100 male customers and found that 57 bought on credit while 52 of the 1 female customers did so. The observed value of the test statistic for testing the null hypothesists the proportion of male customers who buy on credit equals the proportion of females who credit is
- The rise and fall of a time series over periods longer than one year is called ix)
- Suppose 200 different samples are selected from a large population, and then each sampleisur x) to construct a 95% confidence interval to estimate the population. How many of the 200 confidence interval estimates are expected to contain the population mean?

(10 Mark (Total 25 Mat

Wildcat Plumbing Supply has served the plumbing needs of Western Region for more than 25 years. The company has grown from a handful of employees to more than 500 today. The company is concerned about several positions within the company where it has men and women doing essentially the same job but at different pay. Company collected the information below and wants to investigate the salary differences between men and women.

Monthly Salary (In Rs.000's)	Number of Women	Number of Men
20 - 30	2	0
30 - 40	3	1
40 - 50	17	4
50 - 60	16	24
60 - 70	9	21
70 - 80	3	7
80 - 90	0	3

- a. Draw histograms for the salary of men and women and comment on the shape of the distributions of salary of men and women
- b. Calculate the following measures for the salary of men and women separately:
 - i) Mean ii) Median iii) Mode iv) standard deviation
- c. Based on the measures calculated in the above part, would you conclude that there are differences in salary between men and women?

(18 Marks)

- 03. I) a) A recent report in BusinessWeek indicated that 20 percent of all employees steal from their company each year. If a company employs 15 people,
 - i) What is the probability that at least 2 employees steal?
 - ii) How many would you expect to steal from the company?
 - b) The mean amount purchased by a typical customer at Food City is Rs. 2350 with a standard deviation of Rs. 500. Assume that the distribution of amounts purchased follows the normal distribution.
 - What is the probability that the amount purchased by a typical customer is greater than Rs. 2250 but less than Rs. Rs. 2500?
 - ii) For a sample of 50 customers, what is the probability that the mean amount purchased is below Rs. 2200?

II) a. A market survey was conducted to estimate the proportion of homemakers who would recognize the brand name of a cleanser based on the shape and the colour of the container. Of the 1400 homemakers sampled, 420 were able to identify the brand by name.

- i) Estimate the value of the proportion of homemakers who are able to identify the brand name in the population
- ii) Construct a 99% confidence interval for the proportion of homemakers who are able to identify the brand name.
- iii) Interpret your findings

2

(05 Marks)

(07 Marks)

02.

3

b. Commercial Bank and Trust Company is studying the use of its automatic teller machines (ATMs particular interest is whether young adults (under 25 years) use the machines more than so citizens. To investigate further, samples of customers under 25 years of age and customers over years of age were selected. The number of ATM transactions last month was determined for selected individual, and the results are shown below. (Assume that the populations have evariances)

Under 25	10	10	11	15	7	11	10	9			
Over 60	4	8	7	7	4	5	1	7	4	10	5

- i) Compute mean and standard deviation of the number of ATM transactions for both you adults and senior citizens.
- ii) State the appropriate null and alternative hypotheses to test the interest of bar management.
- iii) What is the critical value for the test at 1% level of significance?
- iv) Formulate the decision criteria for the test.
- v) What is the test statistic? Compute it for the given information.
- vi) Write the statistical decision of the test.
- vii) Write your conclusion about the interest of management.
- viii) State any assumption(s) made in performing this test

(15 Marks

(Total 27 Marks

04. The management of Sri Lankan Airlines believes that there is a direct relationship between advertise expenditures and the number of passengers who choose to fly Sri Lankan Airlines. To check their believes statisticians were employed by Sri Lankan Airlines to use Ordinary Least Squares procedures to determine the regression model. The data is as follows:

Observation (Months)	Advertising (in \$1,000's) (X)	Passengers (in 1,000's) (Y)
1	10	· 15
2	12	17
3	8	13
4	17	23
5	10	16
6	15	21
7	10	14
8	14	20
9	19	24.1
10	10	17
11	11	16
12	13	18
13	16	23
14	10	15
15	12	16

- a. Draw an appropriate diagram for the above data set to identify whether there is any relationship between advertising expenditures and the number of passengers.
- Comment on the relationship between advertising expenditures and the number of passengers based on the diagram obtained.
- c. Compute an appropriate statistic to measure the strength of the relationship between advertising expenditures and the number of passengers. Interpret the statistic computed.
- d. Calculate the coefficient of determination and interpret its value based on the given problem.
- e. Estimate the least squares regression equation in an attempt to predict the number of passengers by the advertising expenditure and interpret its coefficients.
- f. Sketch the regression line on the diagram obtained in part (a).
- g. Predict the number of passengers for an expenditure of \$9,000.

(18 Marks)

(Total Marks 18)

Deleven International manufactures and sells toys all around the world. Management accountant of the company wishes to determine seasonal indexes for the quarterly data on revenue. The following table shows the quarterly sales for Deleven International for the years 2013 through 2014. The sales are reported in millions of rupees.

Year	Quarter	Sales
2013	1	7.0
	2	5.5
	3	10.8
	4	15.0
2014	1	7.1
	2	5.7
	3	11.1
	4	14.5
2015	1	8.0
1	2	6.2
	3	11.4
	4	14.9

- a. Determine a quarterly seasonal index using the ratio-to-moving-average method.
- b. The estimated sales trend line is given by $\hat{Y}_t = 7.4885 + 0.3510t$, where t = 1 denotes the first quarter of 2013.
 - i) Forecast the sales for the first three quarters of 2016 incorporating the seasonal index.
 - ii) If the cyclical index is 0.95, what would be the forecasted sales for the fourth quarter of 2016?

(12 Marks)

(Total Marks 12)

TABLE

X Z =

s

σ

Area Under Normal Curve

X

	Z	0	L	2	3	1			1		
	0.0	0.0000	0.0040	0.0000			· 2	6	1 7 .	8	
	0.1	0.0398	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0310	1
	0.2	0.0793	0.0430	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0
	0.3	0.1179	0.1217	0.0871	0.0910	0.0948	0.0987	0.1026	0.106.	0.0714	0
	0,4	0.1554	0.1501	0.1255	0.1293	0.1331	0.1368	0,1406	0 1443	0.1490	10
		012001	0.1391	0.1628	0.1664	0.1700	0.1736	0.1772	0 1808	0.1400	1
1	0.5	0.1915	0.1950	0.1985	0.2010	0.000		1	011000	0.1044	1 W
	0.6	0.2258	0.2291	0.2324	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	01
	0.7	0.2580	0.2612	0.2642	0.2537	0.2389	0.2422	0.2454	0.2486	0.2548	03
	0.8	0.2881	0.2910	0.2939	0.2073	0.2704	0.2734	0.2764	0.2794	0.2823	01
1	0.9	0.3159	0.3186	0.3212	0 3238	0.2996	0.3023	0.3051	0.3078	0.3106	O.
1	1.0	10000			0.5250	0.3264	0.3289	0.3315	0.3340	0.3365	E0
1	1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.2521	0.2554	1		
1	1.1	0.3643	0.3665	0.3686	0.3708	0 3729	0.3331.	0.3554	0.3577	0.3599	10
	1.2	0.3849	0.3869	0.3888	0.3907	11 3925	0.3749	0.3770	0.3790	0.3810	03
	1.2	0.4032	0.4049	0.4056	0.4082	0 4000	0.115	0.3962	0.3980	• 0.3997	0,4
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4715	0.413)	0.4147	0.4162	01
	15	0 4000					0.420.)	0.4279	0.4292	0.4306	Q
	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	04304	0 4405	0.4410		
	1.0	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0,4400	0.4418	0.4429	01
1	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4500	0.4313	0.4525	.0.4535	04
	1.6	0.4641	0.4649	0.4656	0.4664	0.4671	0 4679	0.4008	0.4616	0.4625	Q4
1	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4076	0.4080	0.4693	0.4699	4
1	2.0	0 4777	0 4770	0.170			0.0744	0.4250	U.4/50	0.4761	- W
	2.1	0 4821	0.4770 .	0.4783	0.4788	0.4793	0.4798	0.4803	0 4 808	0 4812	in.
2	2.2	0.4861	0.4820	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4014	8
	2.3	0.4893	0.4804	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4897	0
	2.4	0.4918	0,4890	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4013	-
			0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	D
	2.5	0.4938 *	0.4940	0 4941	04043	0.1015	120.000	100560		0.4224	1
	2.6	0.4953	0.4955	0.4956	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	4
1	2.7	0.4965	0.4966	0.4967	0.4951	0.4939	0.4960	0.4961	0.4962	0.4963	04
1	2.8	.0.4974	0.4975	0.4976	0.4900	0.4969	0.4970	0.4971	0.4972	0.4973	0ľ
	2.9	0.4981	0.4982	0.4982	0.4977	0.49/1	0.4978	0.4979	0.4979	0.4980	0
1				V-T/U2	0.4703	0.4984	0.4984	0.4985	0.4985	0.4986	Qi.
11_	3.0	0.4987	0.4987	0,4987	0.4988	0 4999	04000	0.4000	0.4655		
		00000				017700	U.4707	0.4989	U.4989	0.4990	0.5

6

11

		A	:								
	la ·					1	÷	т. 1.		4. 1	11.52
DEGREES OF	t.100	t.050	f.oab	t.010	ŕ. ₀₀₃	DEGREES OF	t.100	t.050 -	t.025	t.010	t.005
1	3.078	6.314	12:706	31.821	63.657	24	1.318	1,711	2.064	2.492	2.797
2	1.886	2.920	4:303	6.965	9.925	25	1.316	1.708	2.060	2.485	2.787
3	1.638	2.353	3.182	4.541	5.841	26	1.315	1.706	2.056	2.479	2.779
4	1.533	2.132	2.776	3.747	4.604	27	1.314	1.703	2.052	2.473	2.771
5	1.476	2.015	2.571	3.365	4.032	28	1.313	1.701	2.048	2.467	2.763
6	1.440	1.943	2.447	3.143	3.707	. 2.9	1.311	1.699	2.045	2.462	2:756
7	1.415	1.895	2.365	2.998	3.499	30	1.310	1.697	2.042	2.457	2.750
8	1.397	1.860	2.306	2.896	3.355	35	1.306	1.690	2.030	2.438	2.724
9	1.383	1.833	2.262	2.821	3.250	40	1.303	1.684	2.021	2.423	2.705
10	1.372	1.812	2.228	2.764	3.169	45	1.301	1.679	2.014	2.412	2.690
11	1.363	1.796	2.201	2.718	3.106	50	1.299	1.676	2.009	2.403	2.678
12	1.356	1.782	2.179	2.681	3.055	. 60	1.296	1.671	2.000	2.390	2.660
13	1.350	1.771	2.160	2.650	3.012	70	1.294	1.667	1.994	2.381	2.648
14	1.345	1.761	: 2.145	2.624	2.977	80	1.292	1.664	1.990	2.374	2.639
15	1.341	1.753	2.131	2.602	2.947	90	1.291	1.662	1.987	2,369	2.632
16	1.337	1.746	2.120	2.583	2.921	100	1.290	1.660	1.984	2.364	2.626
17	1.333	1.740	2.110	2.567	2.898	120	1.289	1.658	1.980	2.358	2.617
18	1.330	1.734	2.101	2.552	2.878	140	1.288	1.656	1.977	2.353	2.611
19	1.328	1.729	2.093	2.539	2.861	160	1.287	1.654	1.975	2.350	2.607
20	1.325	1725	2.086	2.528	2.845	180	1.286	1.653	1.973	2.347	2.603
21	1.323	. 1721	2.080	2.518	2.831	200	1.286	1.653	1.972	2.345	2.601
22	1.321	1717	2.074	2.508	2.819	· 00	1.282	1.645	1.960	2.326	2.57€
23	1.319	1714	2.069	2.500	2.807		i n	4			
	1. 2	1 1				1 34	192 A	1999 - A 19		and the second states	and the latest

source: From M. Merrington, "Table of Percentage Points of the t-Distribution," Biometrika 32 (1941): 300. Reproduced by permission of the Biometrika Trustees.

.65

4.1

ê

1

 $= -\frac{1}{2}$

4 . A. .

I.

7

1