EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
 FIRST EXAMINATION IN SCIENCE - 2014/2015
 FIRST SEMESTER (Sep./Oct., 2016)
 I 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I (REPEAT)

(a) For any three vectors $\underline{a}, \underline{b}$ and \underline{c}, prove that the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

Let $\underline{l}, \underline{m}$ and \underline{n} be three non zero and non co-planer vectors such that any two of them are not parallel. By considering the vector product $(\underline{r} \wedge \underline{l}) \wedge(\underline{m} \wedge \underline{n})$, prove that any vector \underline{r} can be expressed in the form

$$
\underline{r}=(\underline{r} \cdot \underline{\alpha}) \underline{l}+(\underline{r} \cdot \underline{\beta}) \underline{m}+(\underline{r} \cdot \underline{\gamma}) \underline{n} .
$$

Hence find the vectors $\underline{\alpha}, \underline{\beta}$ and $\underline{\gamma}$ in terms of $\underline{l}, \underline{m}$ and \underline{n}.
(b) Find the equation of the plane passing through three given terminal points of $\underline{a}, \underline{b}$ and \underline{c}.
(c) Find the volume of the parallelepiped whose edges are represented by $(2,-3,4)$, $(1,2,-1)$ and $(3,-1,2)$.
2. Define the following terms:

- gradient of a scalar field;
- divergence of a vector field.
(a) Let $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}, r=|\underline{r}|$ and \underline{a} be a constant vector. Find $\operatorname{div}\left(r^{n} \underline{r}\right)$, wi n is a constant. Show that

$$
\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}+3 \frac{(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r} .
$$

(b) Find the directional derivative of $\phi=2 x^{3}-3 y z$ at the point $(2,1,3)$ in direction parallel to the line whose direction cosines are proportional to $(2,1$
(c) Determine the constant ' a ' so that the vector

$$
\underline{F}=(x+3 y) \underline{i}+(y-2 z) \underline{j}+(x+a z) \underline{k}
$$

is solenoidal.
3. (a) Let $O=(0,0,0), \quad A=(1,0,0), B=(1,2,0)$ and $C=(1,2,3)$. By conside the straight line path $O A, A B, B C$, find the line integral $\int_{\gamma} \underline{F} \cdot d \underline{r}$, where γ path from O to C and $\underline{F}=(2 y+3) \underline{i}+x z \underline{j}+(y z-x) \underline{k}$.
(b) State the Divergence theorem.

Verify the Divergence theorem for $\underline{F}=4 x z \underline{i}-y^{2} \underline{j}+y z \underline{k}$ and S is the sur of the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$ and z :
4. (a) Prove that the radial and transverse component of the acceleration of a pari in terms of the polar co-ordinates (r, θ) are

$$
\ddot{r}-r \dot{\theta}^{2} \text { and } \frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \text { respectively }
$$

(b) A particle of mass m rests on a smooth horizontal table attached through a point on the table by a light elastic string of modules $m g$ and unstretched len ' a '. Initially the string is just taut and the particle is projected along the in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4 a g}{3}}$. P that if r is the distance of the particle from the fixed point at time t then

$$
\frac{d^{2} r}{d t^{2}}=\frac{4 g a^{3}}{3 r^{3}}-\frac{g(r-a)}{a}
$$

Prove also that the string will extend until its length is $2 a$ and that the velocity of the particle is half of its initial velocity.
(a) A particle moves in a plane with the velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.
(b) A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}} .
$$

Prove that if $k=1$, the body cannot have a vertical component of velocity greater than $\frac{v_{0}}{2}$.
(a) State the angular momentum principle for motion of a particle.
(b) A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle of mass m is held at the point A on the smooth inner surface of the cone at a distance ' a ' from the axis of revolution. The particle is projected perpendicular to $O A$ with velocity ' u ', where O is the vertex of the cone. Show that the particle rises above the level of A if $u^{2}>a g \cot \alpha$ and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

