

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2013/2014

SECOND SEMESTER (April/May, 2016)

PM 102 - REAL ANALYSIS

(Proper & Repeat)

rall Questions

Time: Three hours

i. Define what is meant by an inductive set in the set of real numbers, \mathbb{R} .

[10 Marks]

ii. Prove that the set of natural numbers, $\mathbb N$ is the smallest inductive set in $\mathbb R$.

[20 Marks]

- i. Define the terms 'Supremum' and 'Infimum' of a non-empty subset of \mathbb{R} .

 [10 Marks]
- ii. State the completeness property of \mathbb{R} , and use it to prove that every non-empty bounded below subset of \mathbb{R} has an infimum.

[30 Marks]

(c) Consider the set $T = \left\{ (-1)^n \left(1 - \frac{1}{n} \right) : n \in \mathbb{N} \right\}$.

i. Prove that 1 is an upper bound of T. [15 Marks]

ii. Prove that if d is an upper bound of T, then $1 \leqslant d$. [15 Marks]

iii. Use (a) and (b) to prove that Sup T = 1. [10 Marks]

Q2. (a) State what it means by a sequence of real numbers (x_n) converges to a limit

[10 Mark

Use the definition to show that

$$\lim_{n \to \infty} \left(\frac{3n-1}{4n+5} \right) = \frac{3}{4}.$$
 [20]

- (b) Prove that every convergent sequence of real numbers is bounded. [20 Me
- (c) State the Monotone Convergent Theorem.

[10 Man

Let $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + x_n}$ for n = 1, 2, 3, ...

[15 Ma

i. Show that (x_n) is an monotonically increasing sequence. ii. Show that $x_n \leq 2$ for all $n \in \mathbb{N}$.

[10 Man

15 Man

- iii. Does the sequence converge at all? Justify your answer.
- Q3. (a) Define the following terms:

i. a subsequence of a sequence;

[10 Mar

ii. Cauchy sequence.

[10 Mar

(b) Use the result, a real sequence (x_n) converges to a real number l, then subsequence of (x_n) converges to the same limit l, to prove that

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1 \text{ for } c > 1.$$
 [30 Math

- (c) Let (a_n) and (b_n) be two Cauchy sequences and $c_n = |a_n b_n|$. Show that $a_n = |a_n b_n|$ is a Cauchy sequence.
- (d) Prove that a sequence (x_n) of real numbers is convergent if and only if its Cauchy sequence . [30 Mar.]
- Q4. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Explain what is meant by the function $f \models l$ limit $l \in \mathbb{R}$ at a point $a \in \mathbb{R}$.

Prove that $\lim_{x \to 5} x^2 - 3x + 1 = 11$.

25 Mari

(b) Prove that limits of a function, when they exist, are unique.

[15 Mari

(e) Let $A \subseteq \mathbb{R}$ and $f: A \longrightarrow \mathbb{R}$ be a function. Prove that $\lim_{x \longrightarrow a} f(x) = l$ if and only if for every sequence (x_n) in A with $x_n \longrightarrow a$ as $n \longrightarrow \infty$ such that $x_n \neq a$ for all $n \in \mathbb{N}$, we have $f(x_n) \longrightarrow l$ as $n \longrightarrow \infty$.

[30 Marks]

(d) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function and $\lim_{x \to a} f(x) = l \neq 0$.

Prove the following:

i. there exist $\delta > 0$ such that $\frac{|l|}{2} < |f(x)| < \frac{3|l|}{2}$, for all x such that $0 < |x-a| < \delta$; [15 Marks]

ii.
$$\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{l}$$
, if $f(x) \neq 0$, $\forall x \in \mathbb{R}$. [15 Marks]

Define what it means to say that a real-valued function f is continuous at a point a in its domain.

Let $f: \mathbb{R} \to \mathbb{R}$ be such that

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0; \\ 1 & \text{if } x = 0. \end{cases}$$

Prove that, f is continuous at x = 0.

[25 Marks]

- b) Show that if $\lim_{x\to a} f(x) = l$, then $\lim_{x\to a} |f(x)| = |l|$. Is the converse of this result true? Justify your answer. [25 Marks]
- Prove that if a function $f:[a,b] \longrightarrow \mathbb{R}$ is continuous on [a,b], then it is bounded on [a,b].
- State the Intermediate Value Theorem and use it to show that the equation $2x^2(x+2)-1=0$ has a root in each of the intervals (-2,-1), (-1,0) and (0,1).
-) State what is meant by the statement that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is
 - i. differential at $a \in \mathbb{R}$,

[10 Marks]

ii. strictly decreasing at $a \in \mathbb{R}$.

[10 Marks]

- (b) Prove that if a function f: R → R is differentiable at a(∈ R) and f'(a)
 then f is strictly decreasing at a.

 Is the converse true? Justify your answer. [30 Mathematical converse true]
- (c) State the Rolle's Theorem, and use it to prove the Mean Value Theorem. If the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous on [a, b], differentiable on (a, b) if $f'(x) = 0, \forall x \in [a, b]$, prove that f is a constant function on [a, b].

50 Mark